PaineAmissahAugeEtAl2015

Reference

Paine, C.E.T., Amissah, L., Auge, H., Baraloto, C., Baruffol, M., Bourland, N., Bruelheide, H., Dainou, K., de Gouvenain, R.C., Doucet, J.-L., Doust, S., Fine, P.V.A., Fortunel, C., Haase, J., Holl, K.D., Jactel, H., Li, X., Kitajima, K., Koricheva, J., Martinez-Garza, C., Messier, C., Paquette, A., Philipson, C., Piotto, D., Poorter, L., Posada, J.M., Potvin, C., Rainio, K., Russo, S.E., Ruiz-Jaen, M., Scherer-Lorenzen, M., Webb, C.O., Wright, S.J., Zahawi, R.A. and Hector, A. (2015) Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. Journal of Ecology, 103(4):978-989. (Scopus )

Abstract

Plant functional traits, in particular specific leaf area (SLA), wood density and seed mass, are often good predictors of individual tree growth rates within communities. Individuals and species with high SLA, low wood density and small seeds tend to have faster growth rates. If community-level relationships between traits and growth have general predictive value, then similar relationships should also be observed in analyses that integrate across taxa, biogeographic regions and environments. Such global consistency would imply that traits could serve as valuable proxies for the complex suite of factors that determine growth rate, and, therefore, could underpin a new generation of robust dynamic vegetation models. Alternatively, growth rates may depend more strongly on the local environment or growth-trait relationships may vary along environmental gradients. We tested these alternative hypotheses using data on 27 352 juvenile trees, representing 278 species from 27 sites on all forested continents, and extensive functional trait data, 38% of which were obtained at the same sites at which growth was assessed. Data on potential evapotranspiration (PET), which summarizes the joint ecological effects of temperature and precipitation, were obtained from a global data base. We estimated size-standardized relative height growth rates (SGR) for all species, then related them to functional traits and PET using mixed-effect models for the fastest growing species and for all species together. Both the mean and 95th percentile SGR were more strongly associated with functional traits than with PET. PET was unrelated to SGR at the global scale. SGR increased with increasing SLA and decreased with increasing wood density and seed mass, but these traits explained only 3.1% of the variation in SGR. SGR-trait relationships were consistently weak across families and biogeographic zones, and over a range of tree statures. Thus, the most widely studied functional traits in plant ecology were poor predictors of tree growth over large scales. Synthesis. We conclude that these functional traits alone may be unsuitable for predicting growth of trees over broad scales. Determining the functional traits that predict vital rates under specific environmental conditions may generate more insight than a monolithic global relationship can offer. The most widely studied functional traits in plant ecology, specific leaf area, wood density and seed mass, were only weakly associated with tree growth rates over broad scales. Assessing trait-growth relationships under specific environmental conditions may generate more insight than a global relationship can offer. © 2015 British Ecological Society.

EndNote Format

You can import this reference in EndNote.

BibTeX-CSV Format

You can import this reference in BibTeX-CSV format.

BibTeX Format

You can copy the BibTeX entry of this reference below, orimport it directly in a software like JabRef .

@ARTICLE { PaineAmissahAugeEtAl2015,
    AUTHOR = { Paine, C.E.T. and Amissah, L. and Auge, H. and Baraloto, C. and Baruffol, M. and Bourland, N. and Bruelheide, H. and Dainou, K. and de Gouvenain, R.C. and Doucet, J.-L. and Doust, S. and Fine, P.V.A. and Fortunel, C. and Haase, J. and Holl, K.D. and Jactel, H. and Li, X. and Kitajima, K. and Koricheva, J. and Martinez-Garza, C. and Messier, C. and Paquette, A. and Philipson, C. and Piotto, D. and Poorter, L. and Posada, J.M. and Potvin, C. and Rainio, K. and Russo, S.E. and Ruiz-Jaen, M. and Scherer-Lorenzen, M. and Webb, C.O. and Wright, S.J. and Zahawi, R.A. and Hector, A. },
    TITLE = { Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why },
    JOURNAL = { Journal of Ecology },
    YEAR = { 2015 },
    VOLUME = { 103 },
    PAGES = { 978-989 },
    NUMBER = { 4 },
    NOTE = { cited By 0 },
    ABSTRACT = { Plant functional traits, in particular specific leaf area (SLA), wood density and seed mass, are often good predictors of individual tree growth rates within communities. Individuals and species with high SLA, low wood density and small seeds tend to have faster growth rates. If community-level relationships between traits and growth have general predictive value, then similar relationships should also be observed in analyses that integrate across taxa, biogeographic regions and environments. Such global consistency would imply that traits could serve as valuable proxies for the complex suite of factors that determine growth rate, and, therefore, could underpin a new generation of robust dynamic vegetation models. Alternatively, growth rates may depend more strongly on the local environment or growth-trait relationships may vary along environmental gradients. We tested these alternative hypotheses using data on 27 352 juvenile trees, representing 278 species from 27 sites on all forested continents, and extensive functional trait data, 38% of which were obtained at the same sites at which growth was assessed. Data on potential evapotranspiration (PET), which summarizes the joint ecological effects of temperature and precipitation, were obtained from a global data base. We estimated size-standardized relative height growth rates (SGR) for all species, then related them to functional traits and PET using mixed-effect models for the fastest growing species and for all species together. Both the mean and 95th percentile SGR were more strongly associated with functional traits than with PET. PET was unrelated to SGR at the global scale. SGR increased with increasing SLA and decreased with increasing wood density and seed mass, but these traits explained only 3.1% of the variation in SGR. SGR-trait relationships were consistently weak across families and biogeographic zones, and over a range of tree statures. Thus, the most widely studied functional traits in plant ecology were poor predictors of tree growth over large scales. Synthesis. We conclude that these functional traits alone may be unsuitable for predicting growth of trees over broad scales. Determining the functional traits that predict vital rates under specific environmental conditions may generate more insight than a monolithic global relationship can offer. The most widely studied functional traits in plant ecology, specific leaf area, wood density and seed mass, were only weakly associated with tree growth rates over broad scales. Assessing trait-growth relationships under specific environmental conditions may generate more insight than a global relationship can offer. © 2015 British Ecological Society. },
    AUTHOR_KEYWORDS = { Functional ecology; FunDivEurope; Growth; Hierarchical models; Plant population and community dynamics; Relative growth rate; Size-standardized growth rate; TreeDivNet },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.1111/1365-2745.12401 },
    SOURCE = { Scopus },
    URL = { http://www.scopus.com/inward/record.url?eid=2-s2.0-84931570588&partnerID=40&md5=13d679fe897fce9157a1f9535873d0d6 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Colloque **************************** **********************************************************

1er au 3 mai 2019
UQAC

********************************************************** ************* R à Québec 2019**************************** **********************************************************

********************************************************** ********************* Traits **************************** **********************************************************

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Cours intensif sur l'analyse des pistes 
6-10 mai 2019, Université de Sherbrooke
Cours intensif : Taxonomie et méthodes d’échantillonnage en tourbières 
6-17 mai 2019, Université Laval
Dendrochronological Fieldweek 2019 
16-21 mai 2019, Station FERLD
Traits Fonctionnels des Organismes - École thématique internationale 
19-24 mai 2019, Porquerolles, France
Cours aux cycles supérieurs: Terrain avancé en géographie 
10-15 juin 2019, FERLD, Abitibi-Témiscamingue
École d'été « Drones et télédétection environnementale » 
13-14 juin 2019, Sherbrooke
Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Carapace ****************** **********************************************************

********************************************************** ***************** Pub - Budworm ****************** **********************************************************

********************************************************** ***************** Pub - Colibri **************************** **********************************************************

********************************************************** ********** Pub 6 - Au coeur de l'arbre *********** **********************************************************

...Une exposition
virtuelle sur l'arbre!

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...