MaheuHajjiAnctilEtAl2019

Référence

Maheu, A., Hajji, I., Anctil, F., Nadeau, D.F., Therrien, R. (2019) Using the maximum entropy production approach to integrate energy budget modelling in a hydrological model. Hydrology and Earth System Sciences, 23(9):3843-3863. (URL )

Résumé

Total terrestrial evaporation, also referred to as evapotranspiration, is a key process for understanding the hydrological impacts of climate change given that warmer surface temperatures translate into an increase in the atmospheric evaporative demand. To simulate this flux, many hydrological models rely on the concept of potential evaporation (PET), although large differences have been observed in the response of PET models to climate change. The maximum entropy production (MEP) model of land surface fluxes offers an alternative approach for simulating terrestrial evaporation in a simple way while fulfilling the physical constraint of energy budget closure and providing a distinct estimation of evaporation and transpiration. The objective of this work is to use the MEP model to integrate energy budget modelling within a hydrological model. We coupled the MEP model with HydroGeoSphere (HGS), an integrated surface and subsurface hydrologic model. As a proof of concept, we performed one-dimensional soil column simulations at three sites of the AmeriFlux network. The coupled model (HGS-MEP) produced realistic simulations of soil water content (root-mean-square error - RMSE - between 0.03 and 0.05m3m-3; NSE - Nash-Sutcliffe efficiency - between 0.30 and 0.92) and terrestrial evaporation (RMSE between 0.31 and 0.71mmd-1; NSE between 0.65 and 0.88) under semi-arid, Mediterranean and temperate climates. At the daily timescale, HGS-MEP outperformed the stand-alone HGS model where total terrestrial evaporation is derived from potential evaporation, which we computed using the Penman-Monteith equation, although both models had comparable performance at the half-hourly timescale. This research demonstrated the potential of the MEP model to improve the simulation of total terrestrial evaporation in hydrological models, including for hydrological projections under climate change. © Author(s) 2019.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { MaheuHajjiAnctilEtAl2019,
    AUTHOR = { Maheu, A. and Hajji, I. and Anctil, F. and Nadeau, D.F. and Therrien, R. },
    TITLE = { Using the maximum entropy production approach to integrate energy budget modelling in a hydrological model },
    JOURNAL = { Hydrology and Earth System Sciences },
    YEAR = { 2019 },
    VOLUME = { 23 },
    NUMBER = { 9 },
    PAGES = { 3843-3863 },
    NOTE = { cited By 0 },
    ABSTRACT = { Total terrestrial evaporation, also referred to as evapotranspiration, is a key process for understanding the hydrological impacts of climate change given that warmer surface temperatures translate into an increase in the atmospheric evaporative demand. To simulate this flux, many hydrological models rely on the concept of potential evaporation (PET), although large differences have been observed in the response of PET models to climate change. The maximum entropy production (MEP) model of land surface fluxes offers an alternative approach for simulating terrestrial evaporation in a simple way while fulfilling the physical constraint of energy budget closure and providing a distinct estimation of evaporation and transpiration. The objective of this work is to use the MEP model to integrate energy budget modelling within a hydrological model. We coupled the MEP model with HydroGeoSphere (HGS), an integrated surface and subsurface hydrologic model. As a proof of concept, we performed one-dimensional soil column simulations at three sites of the AmeriFlux network. The coupled model (HGS-MEP) produced realistic simulations of soil water content (root-mean-square error - RMSE - between 0.03 and 0.05m3m-3; NSE - Nash-Sutcliffe efficiency - between 0.30 and 0.92) and terrestrial evaporation (RMSE between 0.31 and 0.71mmd-1; NSE between 0.65 and 0.88) under semi-arid, Mediterranean and temperate climates. At the daily timescale, HGS-MEP outperformed the stand-alone HGS model where total terrestrial evaporation is derived from potential evaporation, which we computed using the Penman-Monteith equation, although both models had comparable performance at the half-hourly timescale. This research demonstrated the potential of the MEP model to improve the simulation of total terrestrial evaporation in hydrological models, including for hydrological projections under climate change. © Author(s) 2019. },
    AFFILIATION = { Département des sciences naturelles, Université du Québec en Outaouais, Ripon, QC J0V 1V0, Canada; Département de génie civil et de génie des eaux, Université Laval, Laval, QC G1V 0A6, Canada; Département de géologie et de génie géologique, Université Laval, Laval, QC G1V 0A6, Canada },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.5194/hess-23-3843-2019 },
    SOURCE = { Scopus },
    URL = { https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85072564666&doi=10.5194%2fhess-23-3843-2019&partnerID=40&md5=f2c3ef296b3bddc76778e0e5fd7d52f2 },
}

********************************************************** *************************** FRQNT ************************ **********************************************************

Un regroupement stratégique du

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - ABC CBA 2020 ****************** **********************************************************

31 mai au 4 juin 2020

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...