VismanPesantDionEtAl1996

Référence

Visman, V., Pesant, S., Dion, J., Shipley, B. and Peters, R.H. (1996) Joint effects of maternal and offspring sizes on clutch mass and fecundity in plants and animals. Ecoscience, 3(2):173-182.

Résumé

The allometries of clutch mass and number of offspring per clutch are strikingly similar in data from eight different taxa - metatherians, eutherians, birds, reptiles, amphibians, fish, crustaceans and plants - drawn from the literature (n = 1451). Although clutch mass (C in g) was largely a function of maternal size (Wf in g), offspring size (Wo in g) consistently had a small, positive effect, so that organisms with larger individual offspring tend to have somewhat larger clutch masses: log10 C = -0.31 + 0.78 log10 Wf + 0.14 log10 Wo (r2 = 0.93). The trade-off between offspring size and offspring number is so strong that fecundity (F, number of offspring/clutch) cannot be predicted without considering both maternal and offspring size, but when they are considered simultaneously, one equation fits all: log10 F = -0.32 + 0.79 log10 Wf -0.88 log10 Wo (r2 = 0.92). The effects of taxon in both regressions were significant but small relative to maternal and offspring size. Regressions on both maternal and offspring size appear to be powerful predictors of total clutch mass and fecundity across much of the living world. These relations can therefore be used to establish norms for comparisons, to constrain speculation to reasonable values and to test theoretical developments in discussions of life history.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { VismanPesantDionEtAl1996,
    AUTHOR = { Visman, V. and Pesant, S. and Dion, J. and Shipley, B. and Peters, R.H. },
    TITLE = { Joint effects of maternal and offspring sizes on clutch mass and fecundity in plants and animals },
    JOURNAL = { Ecoscience },
    YEAR = { 1996 },
    VOLUME = { 3 },
    PAGES = { 173-182 },
    NUMBER = { 2 },
    NOTE = { 11956860 (ISSN) Cited By (since 1996): 6 Export Date: 26 April 2007 Source: Scopus Language of Original Document: English Correspondence Address: Shipley, B.; De?partement de Biologie; Universite? de Sherbrooke Sherbrooke, Que. J1K 2R1, Canada; email: bshipley@courrier.usherb.ca References: Bell, G., The costs of reproduction and their consequences (1980) American Naturalist, 116, pp. 45-76; Bell, G., A comparative method (1989) American Naturalist, 133, pp. 553-571; Blueweiss, L., Fox, H., Kudzma, V., Nakashima, D., Peters, R., Sams, S., Relationships between body size and some life history parameters (1978) Oecologia, 37, pp. 257-272; Brody, S., (1945) Bioenergetics and Growth, , Rheinhold, Baltimore, Maryland; Calder, W.A., (1984) Size, Function and Life History, , Harvard University Press, Cambridge, Massachusetts; Charnov, E.L., Evolution of life history variation among female mammals (1991) Proceedings of the National Academy of Science of the U.S.A., 88, pp. 1134-1137; Duarte, C.M., Alcaraz, M., To produce many small or few large eggs: A size-independent reproductive tactic of fish (1989) Oecologia, 80, pp. 401-404; Dunham, A.E., Miles, D.B., Reznick, D.N., Life history patterns in squamate reptiles (1988) Biology of the Reptilia, 16, pp. 443-512. , C. Gans (ed.). John Wiley, New York; Elgar, M.A., Heaphy, L.J., Covariation between clutch size, egg weight and egg shape: Comparative evidence for chelonians (1989) Journal of Zoology, 219, pp. 137-152; Ford, N.B., Seigel, R.A., Relationships among body size and egg size in three species of oviparous snakes (1989) Herpetologica, 45, pp. 75-83; Harvey, P.H., Pagel, M.D., (1991) The Comparative Method in Evolutionary Biology, , Oxford University Press. Oxford; Heinroth, O., Die Beziehungen zwischen Vogelgewicht, Eigewicht, Gelegewicht und Brutdauer (1922) Journal fu?r Ornithologie, 70, pp. 172-249; Ivanova, M.B., Vassilenko, S.V., Relationships between number of eggs, brood weight and female body weight in Crustacea (1987) International Revue Gesamten Hydrobiologie, 72, pp. 147-169; Kovacs, K.M., Lavigne, D.M., Maternal investment and neonatal growth in phocid seals (1986) Journal of Animal Ecology, 55, pp. 1035-1051; Mauchline, J., Egg and brood sizes of oceanic pelagic crustaceans (1988) Marine Ecology Progress Series, 43, pp. 251-258; McArdle, B.H., The structural relationship: Regression in biology (1988) Canadian Journal of Zoology, 66, pp. 2329-2339; Millar, J.S., Adaptive reproductive characteristics of eutherian mammals (1981) Evolution, 35, pp. 1149-1163; Pagel, M.D., Harvey, P.H., Recent developments in the analysis of comparative data (1988) The Quarterly Review of Biology, 63, pp. 413-440; Peters, R.H., (1983) Ecological Implications of Body Size, , Cambridge University Press, New York; Peters, R.H., The relevance of allometric comparisons to growth, reproduction and nutrition in primates and man (1988) Comparative Nutrition, pp. 1-20. , K. Blaxter \& I. Macdonald (ed.). John Libbey, London; Peters, R.H., Downing, J.A., Empirical analysis of zooplankton filtering and feeding rates (1984) Limnology and Oceanography, 29, pp. 763-784; Read, A.F., Harvey, P.H., Life history differences among eutherian radiations (1989) Journal of Zoology, 219, pp. 329-353; Ricker, W.E., Computations and abuses of central trend lines (1973) Canadian Journal of Zoology, 62, pp. 1897-1905; Riska, B., Regression models in evolutionary allometry (1991) American Naturalist, 138, pp. 283-299; Reiss, M.J., (1989) The Allometry of Growth and Reproduction, , Cambridge University Press, Cambridge, Massachusetts; Roff, D.A., The evolution of life history parameters in teleosts (1984) Canadian Journal of Fisheries and Aquatic Sciences, 41, pp. 989-1000; Roff, D.A., Predicting body size with life history models (1986) BioScience, 36, pp. 316-323; Russell, E.M., Patterns of parental care and parental investment in marsupials (1982) Biological Reviews, 57, pp. 423-486; Saether, B.E., The influence of body weight on the covariation between reproductive traits in European birds (1987) Oikos, 48, pp. 79-88; SAS Institute Inc., 1987. Cary, North Carolina; Salthe, S.N., Reproductive modes and the number and sizes of ova in the urodeles (1969) American Midland Naturalist, 81, pp. 467-490; Searle, S.R., (1987) Linear Models for Unbalanced Data, , Wiley, New York; Shipley, B., Dion, J., The allometry of seed production in herbaceous angiosperms (1992) American Naturalist, 139, pp. 467-483; Sokal, R.R., Rohlf, F.J., (1981) Biometry. 2nd Ed., , Freeman, New York; Stearns, S.C., The effects of size and phylogeny on patterns of covariation in the life history traits of lizards and snakes (1984) American Naturalist, 123, pp. 56-72; Vance, R.A., On reproductive strategies in marine benthic invertebrates (1973) American Naturalist, 107, pp. 339-352; Ware, D.M., Bioenergetics of stock and recruitment (1980) Canadian Journal of Fisheries and Aquatic Sciences, 37, pp. 1012-1024. },
    ABSTRACT = { The allometries of clutch mass and number of offspring per clutch are strikingly similar in data from eight different taxa - metatherians, eutherians, birds, reptiles, amphibians, fish, crustaceans and plants - drawn from the literature (n = 1451). Although clutch mass (C in g) was largely a function of maternal size (Wf in g), offspring size (Wo in g) consistently had a small, positive effect, so that organisms with larger individual offspring tend to have somewhat larger clutch masses: log10 C = -0.31 + 0.78 log10 Wf + 0.14 log10 Wo (r2 = 0.93). The trade-off between offspring size and offspring number is so strong that fecundity (F, number of offspring/clutch) cannot be predicted without considering both maternal and offspring size, but when they are considered simultaneously, one equation fits all: log10 F = -0.32 + 0.79 log10 Wf -0.88 log10 Wo (r2 = 0.92). The effects of taxon in both regressions were significant but small relative to maternal and offspring size. Regressions on both maternal and offspring size appear to be powerful predictors of total clutch mass and fecundity across much of the living world. These relations can therefore be used to establish norms for comparisons, to constrain speculation to reasonable values and to test theoretical developments in discussions of life history. },
    KEYWORDS = { Allometry Body size Clutch mass Fecundity Reproduction Seeds allometry body size clutch mass fecundity reproduction },
    OWNER = { brugerolles },
    TIMESTAMP = { 2007.12.05 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...