PlourdeKrauseLord2009

Référence

Plourde, A., Krause, C., Lord, D. (2009) Spatial distribution, architecture, and development of the root system of Pinus banksiana Lamb. in natural and planted stands. Forest Ecology and Management, 258(9):2143-2152. (Scopus )

Résumé

In the province of Québec, Canada, the majority of planted jack pine (Pinus banksiana Lamb.) seedlings are produced in rigid wall containers. More than 95% of them exhibit deformations of the root system which may induce stem instability. Studies of the root architecture of planted jack pine have been limited to a 30 cm radius from the stem, as barely any studies have been devoted to naturally regenerated stands. Moreover, only a few researches have focused on temporal evolution of root systems. The aim of the present study was to characterize the architectural, spatial, and temporal development of jack pine roots in natural and planted stands. Study sites were located in the continuous boreal forest of Quebec. The plantation was done in 1987, so that the trees were 15 years old at the time of sampling. Trees from natural stand had regenerated after a fire in 1983 and were 13-16 years old. The root systems of 14 jack pine trees per site were manually excavated up to a <5 mm diameter, without regard to their distance from the stem. The number, length, diameter, and the spatial and temporal development of roots were analyzed according to three scales of root architecture: the root system, axes, and segments. Overall, the numbers and lengths of roots were higher with planted pines. However, naturally regenerated trees displayed a better distribution of their roots around the stem and at depth, combined with more rapid length growth during the first years. In natural stands, all the trees had a taproot and 30% of the main roots originated at a depth of more than 20 cm, and they are regularly distributed around the stems. Planted trees did not present a taproot and 97% of the main roots originated in the first 20 cm beneath the soil surface. Moreover, 50% of root length was located in one-third of the area surrounding the stems, an area that corresponded to the furrow. Finally, the annual development of lateral roots in planted stand displayed a 5-year delay when compared with natural stand, which also affected maximum growth length and development of the branching pattern. Root distribution and temporal development are known to play a major role in the stability of aerial parts. Seedling production methods, container type, site preparation and planting techniques need to be examined in greater detail in order to assess their effect throughout the development of the root system. It is necessary to compare different sylvicultural practices and with natural/planted stands to gain a clearer understanding of this problem. © 2009 Elsevier B.V. All rights reserved.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { PlourdeKrauseLord2009,
    AUTHOR = { Plourde, A. and Krause, C. and Lord, D. },
    TITLE = { Spatial distribution, architecture, and development of the root system of Pinus banksiana Lamb. in natural and planted stands },
    JOURNAL = { Forest Ecology and Management },
    YEAR = { 2009 },
    VOLUME = { 258 },
    PAGES = { 2143-2152 },
    NUMBER = { 9 },
    ABSTRACT = { In the province of Québec, Canada, the majority of planted jack pine (Pinus banksiana Lamb.) seedlings are produced in rigid wall containers. More than 95% of them exhibit deformations of the root system which may induce stem instability. Studies of the root architecture of planted jack pine have been limited to a 30 cm radius from the stem, as barely any studies have been devoted to naturally regenerated stands. Moreover, only a few researches have focused on temporal evolution of root systems. The aim of the present study was to characterize the architectural, spatial, and temporal development of jack pine roots in natural and planted stands. Study sites were located in the continuous boreal forest of Quebec. The plantation was done in 1987, so that the trees were 15 years old at the time of sampling. Trees from natural stand had regenerated after a fire in 1983 and were 13-16 years old. The root systems of 14 jack pine trees per site were manually excavated up to a <5 mm diameter, without regard to their distance from the stem. The number, length, diameter, and the spatial and temporal development of roots were analyzed according to three scales of root architecture: the root system, axes, and segments. Overall, the numbers and lengths of roots were higher with planted pines. However, naturally regenerated trees displayed a better distribution of their roots around the stem and at depth, combined with more rapid length growth during the first years. In natural stands, all the trees had a taproot and 30% of the main roots originated at a depth of more than 20 cm, and they are regularly distributed around the stems. Planted trees did not present a taproot and 97% of the main roots originated in the first 20 cm beneath the soil surface. Moreover, 50% of root length was located in one-third of the area surrounding the stems, an area that corresponded to the furrow. Finally, the annual development of lateral roots in planted stand displayed a 5-year delay when compared with natural stand, which also affected maximum growth length and development of the branching pattern. Root distribution and temporal development are known to play a major role in the stability of aerial parts. Seedling production methods, container type, site preparation and planting techniques need to be examined in greater detail in order to assess their effect throughout the development of the root system. It is necessary to compare different sylvicultural practices and with natural/planted stands to gain a clearer understanding of this problem. © 2009 Elsevier B.V. All rights reserved. },
    COMMENT = { Export Date: 10 February 2010 Source: Scopus CODEN: FECMD doi: 10.1016/j.foreco.2009.08.016 },
    ISSN = { 03781127 (ISSN) },
    KEYWORDS = { Annual growth, Architecture, Furrow, Jack pine, Natural stand, Pinus banksiana, Plantation, Root system, Spatial development, Annual growth, Furrow, Jack pine, Natural stand, Pinus banksiana, Plantation, Root system, Spatial development, Information dissemination, Plants (botany), Forestry, canopy architecture, developmental biology, growth rate, population distribution, root system, seedling, silviculture, soil surface, spatial distribution, spatiotemporal analysis, tree, Forestry, Growth, Pinus Banksiana, Plantations, Plants, Roots, Canada, North America, Quebec [Canada], Pinus banksiana },
    OWNER = { Luc },
    TIMESTAMP = { 2010.02.10 },
    URL = { http://www.scopus.com/inward/record.url?eid=2-s2.0-70349293585&partnerID=40&md5=d918feff8247a83b9653c6f5b1fb3270 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...