AzeriaFortinHebertEtAl2009

Référence

Azeria, E.T., Fortin, D., Hebert, C., Peres-Neto, P., Pothier, D. and Ruel, J.-C. (2009) Using null model analysis of species co-occurrences to deconstruct biodiversity patterns and select indicator species. Diversity and Distributions, 15(6):958-971. (Scopus )

Résumé

Aim Using total species richness to characterize biodiversity may mask multiple response patterns of species. We propose a null model analysis of species co-occurrence-based classification to identify sets of species that may have similar (within-groups) and distinct (between groups) response patterns to their environment. The classification should also provide an explicit framework for selecting indicator species with characteristic co-occurrence patterns to predict overall species richness. Location Côte-Nord, Québec, Canada. Methods We combined null-model of species co-occurrence and cluster analysis to identify species groups within diverse assemblages of ground-dwelling and flying beetles of stands in a boreal forest mosaic; we then examined their co-occurrence and response patterns to habitat characteristics. Best subset regressions were used to select indicator species of richness within each group, from which indicators of total species richness were selected. Results The identified species groups appeared to display contrasting co-occurrence and response patterns to at least one of the stand-level habitat characteristics. Among flying beetles, for example, richness increased with stand-level heterogeneity for two groups and decreased for two other groups, but the relationship was non-significant for the total richness. We identified 28 indicator species that explained > 80% (validated by bootstrap analysis) of the variation in total species richness. Predictive performance of indicators was higher than when their co-occurrence were reshuffled, even under a highly constrained null model, indicating that co-occurrence patterns contributed to their predictive performance. Main conclusions Co-occurrence-based classification appears as a promising and effective tool for deconstructing biodiversity into species groups which reflect their ecological commonalities and differences, thus reducing the risk of making faulty inferences about the causes underlying overall diversity patterns. The method provides an explicit framework for selecting indicator species representing different species groups that may reflect the multiple responses of species co-occurring with them. Indicator species can be effective for predicting overall species richness. © 2009 Blackwell Publishing Ltd.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { AzeriaFortinHebertEtAl2009,
    AUTHOR = { Azeria, E.T. and Fortin, D. and Hebert, C. and Peres-Neto, P. and Pothier, D. and Ruel, J.-C. },
    TITLE = { Using null model analysis of species co-occurrences to deconstruct biodiversity patterns and select indicator species },
    JOURNAL = { Diversity and Distributions },
    YEAR = { 2009 },
    VOLUME = { 15 },
    PAGES = { 958-971 },
    NUMBER = { 6 },
    ABSTRACT = { Aim Using total species richness to characterize biodiversity may mask multiple response patterns of species. We propose a null model analysis of species co-occurrence-based classification to identify sets of species that may have similar (within-groups) and distinct (between groups) response patterns to their environment. The classification should also provide an explicit framework for selecting indicator species with characteristic co-occurrence patterns to predict overall species richness. Location Côte-Nord, Québec, Canada. Methods We combined null-model of species co-occurrence and cluster analysis to identify species groups within diverse assemblages of ground-dwelling and flying beetles of stands in a boreal forest mosaic; we then examined their co-occurrence and response patterns to habitat characteristics. Best subset regressions were used to select indicator species of richness within each group, from which indicators of total species richness were selected. Results The identified species groups appeared to display contrasting co-occurrence and response patterns to at least one of the stand-level habitat characteristics. Among flying beetles, for example, richness increased with stand-level heterogeneity for two groups and decreased for two other groups, but the relationship was non-significant for the total richness. We identified 28 indicator species that explained > 80% (validated by bootstrap analysis) of the variation in total species richness. Predictive performance of indicators was higher than when their co-occurrence were reshuffled, even under a highly constrained null model, indicating that co-occurrence patterns contributed to their predictive performance. Main conclusions Co-occurrence-based classification appears as a promising and effective tool for deconstructing biodiversity into species groups which reflect their ecological commonalities and differences, thus reducing the risk of making faulty inferences about the causes underlying overall diversity patterns. The method provides an explicit framework for selecting indicator species representing different species groups that may reflect the multiple responses of species co-occurring with them. Indicator species can be effective for predicting overall species richness. © 2009 Blackwell Publishing Ltd. },
    COMMENT = { Export Date: 11 November 2009 Source: Scopus CODEN: DIDIF doi: 10.1111/j.1472-4642.2009.00613.x },
    ISSN = { 13669516 (ISSN) },
    KEYWORDS = { Biodiversity deconstruction, Boreal forest, Co-occurrence, Indicator species, Null model analysis },
    OWNER = { Luc },
    TIMESTAMP = { 2009.11.11 },
    URL = { http://www.scopus.com/inward/record.url?eid=2-s2.0-70349925236&partnerID=40 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Colloque **************************** **********************************************************

1er au 3 mai 2019
UQAC

********************************************************** ************* R à Québec 2019**************************** **********************************************************

********************************************************** ********************* Traits **************************** **********************************************************

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Cours intensif sur l'analyse des pistes 
6-10 mai 2019, Université de Sherbrooke
Cours intensif : Taxonomie et méthodes d’échantillonnage en tourbières 
6-17 mai 2019, Université Laval
Dendrochronological Fieldweek 2019 
16-21 mai 2019, Station FERLD
Traits Fonctionnels des Organismes - École thématique internationale 
19-24 mai 2019, Porquerolles, France
Cours aux cycles supérieurs: Terrain avancé en géographie 
10-15 juin 2019, FERLD, Abitibi-Témiscamingue
École d'été « Drones et télédétection environnementale » 
13-14 juin 2019, Sherbrooke
Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Carapace ****************** **********************************************************

********************************************************** ***************** Pub - Budworm ****************** **********************************************************

********************************************************** ***************** Pub - Colibri **************************** **********************************************************

********************************************************** ********** Pub 6 - Au coeur de l'arbre *********** **********************************************************

...Une exposition
virtuelle sur l'arbre!

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...