DelormeThomas1999

Référence

Delorme, M., Thomas, D.W. (1999) Comparative analysis of the digestive efficiency and nitrogen and energy requirements of the phyllostomid fruit-bat (Artibeus jamaicensis) and the pteropodid fruit-bat (Rousettus aegyptiacus). Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 169(2):123-132.

Résumé

Nitrogen (N) and energy (E) requirements of the phyllostomid fruit bat, Artibeus jamaicensis, and the pteropodid fruit bat Rousettus aegyptiacus, were measured in adults that were fed on four experimental diets. Mean daily food intake by A. jamaicensis and R. aegyptiacus ranged from 1.1-1.6 times body mass and 0.8-1.0 times body mass, respectively. Dry matter digestibility and metabolizable E coefficient were high (81.1% and 82.4%, respectively) for A. jamaicensis and (77.5% and 78.0%, respectively) for R. aegyptiacus. Across the four diets, bats maintained constant body mass with mean metabolizable E intakes ranging from 1357.3 kJ · kg(-0.75)· day-1 to 1767.3 kJ· kg(-0.75)·day-1 for A. jamaicensis and 1282.6-1545.2 kJ·kg(-0.75)·day-1 for R. aegyptiacus. Maintenance E costs were high, in the order of 3.6-5.4 times the basal metabolic rate (BMR). It is unlikely that the E intakes that we observed represent a true measure of maintenance E requirements. All evidence seems to indicate that fruit bats are E maximizers, ingesting more E than required and regulating storage by adjusting metabolic output. We suggest that true maintenance E requirements are substantially lower than what we observed. If it follows the eutherian norm of two times the BMR, fruit bats must necessarily over-ingest E on low-N fruit diet. Dietary E content did affect N metabolism of A. jamaicensis. On respective low- and high-E diets, metabolic fecal N were 0.492 mg N·g-1 and 0.756 mg N·g-1 dry matter intake and endogenous urinary N losses were 163.31 mg N·kg(-0.75)·day-1 and 71.54 mg N·kg(-0.75)·day-1. A. jamaicensis required 332.3 mg · kg(-0.75)· day-1 and 885.3 mg · kg(-0.75)· day-1 of total N on high- and low-E diets, respectively, and 213.7 mg · kg(-0.75) · day-1 of truly digestible N to achieve N balance. True N digestibilities were low (29% and 49%) for low- and high-E diets, respectively. For R. aegyptiacus, metabolic fecal N and endogenous urinary N losses were 1.27 mg N · g-1 dry matter intake and 96.0 mg N · kg(-0.75) · day-1, respectively, and bats required 529.8 mg · kg(-0.75) · day-1 (total N) or 284.0 mg · kg(-0.75) · day-1- (truly digestible N). True N digestibility was relatively low (50%). Based on direct comparison, we found no evidence that R. aegyptiacus exhibits a greater degree of specialization in digestive function and N retention than A. jamaicensis. When combined with results from previous studies, our results indicate that all fruit bats appear to be specialized in their ability to retain N when faced with low N diet.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { DelormeThomas1999,
    AUTHOR = { Delorme, M. and Thomas, D.W. },
    TITLE = { Comparative analysis of the digestive efficiency and nitrogen and energy requirements of the phyllostomid fruit-bat (Artibeus jamaicensis) and the pteropodid fruit-bat (Rousettus aegyptiacus) },
    JOURNAL = { Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology },
    YEAR = { 1999 },
    VOLUME = { 169 },
    PAGES = { 123-132 },
    NUMBER = { 2 },
    NOTE = { 01741578 (ISSN) Cited By (since 1996): 14 Export Date: 26 April 2007 Source: Scopus CODEN: JCPBD doi: 10.1007/s003600050202 Language of Original Document: English Correspondence Address: Delorme, M.; Recherche/developpement scientifique; Biodome de Montreal; 4777, ave Pierre-De Coubertin Montreal, Que. H1V 1B3, Canada; email: mdelorme@pe2.ville.montreal.qc.ca Chemicals/CAS: nitrogen, 7727-37-9; Nitrogen, 7727-37-9 References: Anderson, S., Jones J., Jr., (1967) Recent Mammals of the World. A Synopsis of Families, , Ronald, New York; Audet, D., Thomas, D.W., Facultative hypothermia as a thermoregulatory strategy in the Phyllostomid bats, Carollia perspicillata and Sturnira lilium (1997) J Comp Physiol B, 167, pp. 146-152; Bhat, H.R., Observations on the food and feeding behaviour of Cvnopterus sphinx Vahl (Chiroptera, Pteropodidae) at Pune, India (1994) Mammalia, 58, pp. 363-370; Bell, G.P., Bartholomew, G.A., Nagy, K.A., The roles of energetics, water economy, foraging behavior, and geothermal refugia in the distribution of the bat, Macrotus californicus (1986) J Comp Physiol B, 156, pp. 441-450; Bosque, C., De Parra, O., Digestive efficiency and rale of food passage in oilbird nestlings (1992) Condor, 94, pp. 557-571; Campfield, L.A., Smith, F.J., Guisez, Y., Devos, R., Burn, P., Recombinant mouse OB protein: Evidence for a peripheral signal linking adiposity and central neural networks (1995) Science, 269, pp. 546-549; Delorme, M., Thomas, D.W., Nitrogen and energy requirements of the short-tailed fruit bat (Carollia perspicillata): Fruit bats are not nitrogen constrained (1996) J Comp Physiol B, 166, pp. 427-434; Fenton, M.B., Audet, D., Obrist, M.K., Rydell, J., Signal strength, timing, and self-deafening: The evolution of echolocation in bats (1995) Paleobiology, 21, pp. 229-242; Fleming, T.H., (1988) The Short-tailed Fruit Bat: A Study in Plant-animal Interactions, p. 365. , The University of Chicago Press, Chicago; Fleming, T.H., Hooper, E.T., Wilson, D.E., Three central American bat communities: Structure, reproductive cycles, and movement patterns (1972) Ecology, 53, pp. 555-569; Foster, M.S., Total frugivory in tropical passerines: A reappraisal (1978) J Trop Ecol, 19, pp. 131-154; Halaas, J.L., Gajiwala, K.S., Maffei, M., Cohen, S.L., Chait, B.T., Rabinowitz, D., Lallone, R.L., Friedman, J.M., Weight-reducing effects of the plasma protein encoded by the obese gene (1995) Science, 269, pp. 543-546; Herbst, L.H., The role of nitrogen from fruit pulp in the nutrition of the frugivorous bat Carollia perspicillata (1986) Biotropica, 18, pp. 39-44; Holter, J.B., Hayes, H.H., Smith, S.H., Protein requirements of yearling white-tailed deer (1979) J Wildl Manage, 43, pp. 872-879; Howe, H.F., Estabrook, G.F., On intraspecific competition for avian dispersers in tropical trees (1977) Am Nat, 111, pp. 817-832; Hwa, J.J., Ghibaudi, L., Compton, D., Fawzi, A.B., Strader, C.D., Intracerebroventricular injection of leptin increases thermogenesis and mobilizes fat metabolism in ob/ob mice (1996) Horm Metab Res, 28, pp. 659-663; Kaiyala, K.J., Woods, S.C., Schwartz, M.W., New model for the regulation of energy balance and adiposity by the central nervous system (1995) Am J Clin Nutr, 62, pp. S1123-S1134; Kleiber, M., (1961) The Fire of Life, , John Wiley. New York; Korine, C., Arad, Z., Effect of water restriction on temperature regulation of the fruit-bat Rousettus aegyptiacus (1993) J Therm Biol, 18, pp. 61-69; Korine, C., Arad, Z., Arieli, A., Nitrogen and E balance of the fruit-bat, Rousettus aegyptiacus on natural fruit diets (1996) Physiol Zool, 69, pp. 618-634; Kunz, T.H., Diaz, C.A., Folivory in fruit-eating bats, with new evidence from Artibeus jamaicensis (Chiroptera: Phyllostomidae) (1995) Biotropica, 27, pp. 106-120; Kunz, T.H., Ingalls, K.A., Folivory in bats: An adaptation derived from frugivory (1994) Funct Ecol, 8, pp. 665-668; Kunz, T.H., Robson, S.K., Nagy, K.A., Economy of harem maintenance in the greater spear-nosed bat (Phyllostomus hastatus) (1998) J Mammal, 79, pp. 631-642; Law, B.S., The maintenance nitrogen requirements of the Queensland blossom bat (Syconycteris australis) on a sugar/pollen diet: Is nitrogen a limiting resource? (1992) Physiol Zool, 65, pp. 634-648; Mattson, W.J., Herbivory in relation to nitrogen content (1980) Annu Rev Ecol Syst, 11, pp. 119-161; Maynard, L.A., Looslie, J.K., Hintz, H.F., Warner, R.G., (1962) Animal Nutrition, , Mc Graw-Hill, New York; McNab, B.K., The economics of temperature regulation in neotropical bats (1969) Comp Biochem Physiol, 31, pp. 227-268; McNab, B.K., Seasonal fat reserves of bats in two tropical environments (1976) Ecology, 57, pp. 332-338; Milton, K., Factors influencing leaf choice by howler monkeys: A test of some hypotheses of food selection by generalist herbivores (1979) Am Nat, 114, pp. 362-378; Morrison, D.W., Foraging ecology and energetics of the frugivorous bat Artibeus jamaicensis (1978) Ecology, 59 (4), pp. 716-723; Nagy, K.A., Field metabolic rate and food requirement scaling in mammals and birds (1987) Ecol Monogr, 57 (2), pp. 111-128; Noll, U.G., Body temperature, oxygen consumption, noradrenalin response and cardio-vascular adaptations in the flying fox Rousettus aegyptiacus (1979) Comp Biochem Physiol A, 63, pp. 79-88; Okon, E.E., Histological changes of the interscapular brown adipose tissue in Eidolon helvum in relation to diurnal activities of the bats (1980) Proceedings, Fifth International Bat Research Conference, pp. 91-94. , Wilson DE, Gardner AL (eds). Texas Tech University Press, Lubbock; Parry-Jones, K., Augee, M.L., Insects in flying-fox diets (1992) Bat Res News, 33, pp. 9-11; Pelleymounter, M.A., Cullen, M.J., Baker, M.B., Hecht, R., Winters, D., Boone, T., Collins, F., Effects of the obese gene product on body weight regulation in ob/ob mice (1995) Science, 269, pp. 540-543; Peters, R.H., (1983) The Ecological Implications of Body Size, p. 105. , Cambridge University Press, Cambridge; Pettigrew, J.D., Flying primates: Crashed, or crashed through? (1995) Ecology, Evolution and Behaviour of Bats, pp. 3-26. , Racey PA, Swift SM (eds). Oxford University Press, New York; Robbins, C.T., (1993) Wildlife Feeding and Nutrition, p. 352. , Academic Press, San Diego; Roberts, P., Seabrook, W.A., A relationship between black rats (Rattus rattus), Seychelle fruit bats (Pteropus seychellensis aldabrensis) and the coccoid (Icerya seychellarum) (Insecta, Homoptera) on Aldabra Atoll, Seychelles (1989) J Zool (Lond), 218, pp. 332-334; Rothwell, N.J., Stock, M.J., A role for brown adipose tissue in diet-induced thermogenesis (1979) Nature, 281, pp. 31-35; Schwartz, M.W., Seeley, R.J., Campfield, L.A., Burn, P., Baskin, D.G., Identification of targets of leptin action in rat hypothalamus (1996) J Clin Invest, 98, pp. 1101-1106; Smith, A.P., Green, S.W., Nitrogen requirements of the sugar glider (Petaurus breviceps), an omnivorous marsupial, on a honey-pollen diet (1987) Physiol Zool, 60, pp. 82-92; Steller, D.C., The dietary E and nitrogen requirements of the grey-headed flying fox, Pteropus poliocephalus (Temminck) (Megachiroptera) (1986) Aust J Zool, 34, pp. 339-349; Stephens, T.W., Basinski, M., Bristow, P.K., The role of neuropeptide Y in the antiobesity action of the obese gene product (1995) Nature, 377, pp. 530-532; Thomas, D.W., Fruit intake and energy budgets of frugivorous bats (1984) Physiol Zool, 57, pp. 457-467; Von Helverson, O., Reyer, H.U., Nectar intake and energy expenditure in a flower visiting bat (1984) Oecologia, 63, pp. 178-184; Widmaier, E.P., Kunz, T.H., Basal, diurnal, and stress-induced levels of glucose and glucocorticoids in captive bats (1993) J Exp Zool, 265, pp. 533-540. },
    ABSTRACT = { Nitrogen (N) and energy (E) requirements of the phyllostomid fruit bat, Artibeus jamaicensis, and the pteropodid fruit bat Rousettus aegyptiacus, were measured in adults that were fed on four experimental diets. Mean daily food intake by A. jamaicensis and R. aegyptiacus ranged from 1.1-1.6 times body mass and 0.8-1.0 times body mass, respectively. Dry matter digestibility and metabolizable E coefficient were high (81.1% and 82.4%, respectively) for A. jamaicensis and (77.5% and 78.0%, respectively) for R. aegyptiacus. Across the four diets, bats maintained constant body mass with mean metabolizable E intakes ranging from 1357.3 kJ · kg(-0.75)· day-1 to 1767.3 kJ· kg(-0.75)·day-1 for A. jamaicensis and 1282.6-1545.2 kJ·kg(-0.75)·day-1 for R. aegyptiacus. Maintenance E costs were high, in the order of 3.6-5.4 times the basal metabolic rate (BMR). It is unlikely that the E intakes that we observed represent a true measure of maintenance E requirements. All evidence seems to indicate that fruit bats are E maximizers, ingesting more E than required and regulating storage by adjusting metabolic output. We suggest that true maintenance E requirements are substantially lower than what we observed. If it follows the eutherian norm of two times the BMR, fruit bats must necessarily over-ingest E on low-N fruit diet. Dietary E content did affect N metabolism of A. jamaicensis. On respective low- and high-E diets, metabolic fecal N were 0.492 mg N·g-1 and 0.756 mg N·g-1 dry matter intake and endogenous urinary N losses were 163.31 mg N·kg(-0.75)·day-1 and 71.54 mg N·kg(-0.75)·day-1. A. jamaicensis required 332.3 mg · kg(-0.75)· day-1 and 885.3 mg · kg(-0.75)· day-1 of total N on high- and low-E diets, respectively, and 213.7 mg · kg(-0.75) · day-1 of truly digestible N to achieve N balance. True N digestibilities were low (29% and 49%) for low- and high-E diets, respectively. For R. aegyptiacus, metabolic fecal N and endogenous urinary N losses were 1.27 mg N · g-1 dry matter intake and 96.0 mg N · kg(-0.75) · day-1, respectively, and bats required 529.8 mg · kg(-0.75) · day-1 (total N) or 284.0 mg · kg(-0.75) · day-1- (truly digestible N). True N digestibility was relatively low (50%). Based on direct comparison, we found no evidence that R. aegyptiacus exhibits a greater degree of specialization in digestive function and N retention than A. jamaicensis. When combined with results from previous studies, our results indicate that all fruit bats appear to be specialized in their ability to retain N when faced with low N diet. },
    KEYWORDS = { Artibeus jamaicensis Rousettus aegyptiacus },
    OWNER = { brugerolles },
    TIMESTAMP = { 2007.12.05 },
}

********************************************************** *************************** FRQNT ************************ **********************************************************

Un regroupement stratégique du

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - ABC CBA 2020 ****************** **********************************************************

31 mai au 4 juin 2020

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...