HumphriesBoutinThomasEtAl2005

Référence

Humphries, M.M., Boutin, S., Thomas, D.W., Ryan, J.D., Selman, C., McAdam, A.G., Berteaux, D. and Speakman, J.R. (2005) Expenditure freeze: The metabolic response of small mammals to cold environments. Ecology Letters, 8(12):1326-1333.

Résumé

There is renewed focus on the ecological determinants of animal metabolism and recent comparative analyses support the physiological expectation that the field metabolic rate (FMR) of homeotherms should increase with declining ambient temperature. However, sustained elevation of FMR during prolonged, seasonal cold could be prevented by intrinsic limits constraining FMR to some multiple of basal metabolic rate (BMR) or extrinsic limits on resource abundance. We analysed previous measures of mammalian FMR and BMR to establish the effect of ambient temperature on both traits and found no support for intrinsic limitation. We also measured the FMR of a northern population of red squirrels (Tamiasciurus hudsonicus) exposed to ambient temperatures much colder than all but one previous study of mammal FMR. These measurements revealed levels of energy expenditure that are, unexpectedly, among the lowest ever recorded in homeotherms and that actually decrease as it gets colder. Collectively, these results suggest the metabolic niche space of cold climate endotherms may be much larger than previously recognized. © Blackwell Publishing Ltd/CNRS.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { HumphriesBoutinThomasEtAl2005,
    AUTHOR = { Humphries, M.M. and Boutin, S. and Thomas, D.W. and Ryan, J.D. and Selman, C. and McAdam, A.G. and Berteaux, D. and Speakman, J.R. },
    TITLE = { Expenditure freeze: The metabolic response of small mammals to cold environments },
    JOURNAL = { Ecology Letters },
    YEAR = { 2005 },
    VOLUME = { 8 },
    PAGES = { 1326-1333 },
    NUMBER = { 12 },
    NOTE = { 1461023X (ISSN) Cited By (since 1996): 1 Export Date: 26 April 2007 Source: Scopus CODEN: ECLEF doi: 10.1111/j.1461-0248.2005.00839.x Language of Original Document: English Correspondence Address: Humphries, M.M.; Natural Resource Sciences; Macdonald Campus; McGill University Ste-Anne-de-Bellevue, Que. H9X 3V9, Canada; email: murray.humphries@mcgill.ca References: Anderson, K.J., Jetz, W., The broad-scale ecology of energy expenditure of endotherms (2005) Ecol. Lett., 8, pp. 310-318; Berteaux, D., Boutin, S., Breeding dispersal in female North American red squirrels (2000) Ecology, 81, pp. 1311-1326; Black, A.E., Coward, W.A., Cole, T.J., Prentice, A.M., Human energy expenditure in affluent societies: An analysis of 574 doubly-labelled water measurements (1996) Eur. J. Clin. Nutr., 50, pp. 72-92; Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., West, G.B., Towards a metabolic theory of ecology (2004) Ecology, 85, pp. 1771-1789; Daan, S., Masman, D., Gronewold, A., Avian basal metabolic rates: Their association with body composition and energy expenditure in nature (1990) Am. J. Physiol., 259, pp. R333-R340; Drent, R.H., Daan, S., The prudent parent: Energetic adjustments in avian breeding (1980) Ardea, 68, pp. 225-252; Ergon, T., Speakman, J.R., Scantlebury, M., Cavanagh, R., Lambin, X., Optimal body size and energy expenditure during winter: Why are voles smaller in declining populations? (2004) Am. Nat., 163, pp. 442-457; Felsenstein, J., Phylogenies and the comparative method (1985) Am. Nat., 125, pp. 1-15; Garland Jr., T., Harvey, P.H., Ives, A.R., Procedures for the analysis of comparative data using phylogenetically independent contrasts (1992) Syst. Biol., 41, pp. 18-32; Hammond, K.A., Diamond, J., Maximum sustained energy budgets in humans and animals (1997) Nature, 386, pp. 457-462; Heldmaier, G., Seasonal acclimatization of energy requirements in mammals: Functional significance of body weight control, hypothermia, torpor and hibernation (1989) Energy Transformations in Cells and Organisms, pp. 130-139. , (eds Wieser, W. \& Gnaiger, E.). Georg Thieme Verlag, Stuttgart; Holleman, D.F., White, R.G., Feist, D.D., Seasonal energy and water metabolism in free-living Alaskan voles (1982) J. Mamm., 63, pp. 293-296; Humphries, M.M., Boutin, S., The determinants of optimal litter size in free-ranging red squirrels (2000) Ecology, 81, pp. 2867-2877; King, J.R., Murphy, M.E., Periods of nutritional stress in the annual cycles of endotherms: Fact or fiction? (1985) Am. Zool., 25, pp. 955-964; Lifson, N., Gordon, G.B., McClintock, R., Measurement of total carbon dioxide production by means of D 2O18 (1955) J. Appl. Physiol., 7, pp. 704-710; Lovegrove, B.G., The influence of climate on the basal metabolic rate of small mammals: A slow fast continuum (2003) J. Comp. Physiol. B, 173, pp. 87-112; Lovegrove, B.G., Seasonal thermoregulatory responses in mammals (2005) J. Comp. Physiol. B, 175, pp. 231-247; Maddison, W.P., Maddison, D.R., (2004) Mesquite: A Modular System for Evolutionary Analysis. Version 1.05, , http://mesquite-project.org; McAdam, A.G., Boutin, S., Variation in viability selection among cohorts of juvenile red squirrels (Tamiasciurus hudsonicus) (2003) Evolution, 57, pp. 1689-1697; McNab, B.K., (2002) The Physiological Ecology of Vertebrates: A View from Energetics, , Cornell University of Press, Ithaca, NY; Midford, P.E., Garland Jr., T., Maddison, W., (2002) PDAP:PDTREE Package for Mesquite, Version 1.00, , http://mesquiteproject.org/pdap_mesquite/; Nagy, K.A., The doubly labeled water (3HH18O) method: A guide to its use (1983) University of California, Los Angeles Publication No. 12-1417, , University of California, Los Angeles; Nagy, K.A., Field metabolic rate and body size (2005) J. Exp. Biol., 208, pp. 1621-1625; Nagy, K.A., Montgomery, G.G., Field metabolic rate, water flux, and food-consumption in three-toed sloths (Bradypus variegatus) (1980) J. Mammal., 61, pp. 465-472; Nagy, K.A., Girard, I.A., Brown, T.K., Energetics of free-ranging mammals, reptiles, and birds (1999) Ann. Rev. Nutr., 19, pp. 247-277; Nespolo, R.F., Bacigalupe, L.D., Bozinovic, F., The influence of heat increment of feeding on basal metabolic rate in Phyllotis darwini (Muridae) (2003) Comp. Biochem. Physiol. A, 134, pp. 139-145; Pauls, R.W., Energetics of the red squirrel: A laboratory study of the effects of temperature, seasonal acclimatization, use of the nest and exercise (1978) J. Therm. Biol., 6, pp. 79-86; Pauls, R.W., Behavioural strategies relevant to the energy economy of the red squirrel (Tamiasciurus hudsonicus) (1978) Can. J. Zool., 56, pp. 1519-1525; Peterson, C.C., Nagy, K.A., Diamond, J., Sustained metabolic scope (1990) Proc. Natl. Acad. Sci. USA, 87, pp. 2324-2328; Pruitt, W.O., Lucier, C.V., Winter activity of red squirrels in interior Alaska (1958) J. Mammal., 39, pp. 443-444; Rosenmann, M., Morrison, P., Feist, D., Seasonal changes in the metabolic capacity of red-backed voles (1975) Physiol. Zool., 48, pp. 303-310; Speakman, J.R., (1997) Doubly-labelled Water: Theory and Practice, , Chapman and Hall, London; Speakman, J.R., The cost of living: Field metabolic rates of small mammals (2000) Adv. Ecol. Res., 30, pp. 177-297; Speakman, J.R., Ergon, T., Cavanagh, R., Reid, K., Scantlebury, D.M., Lambin, X., Resting and daily energy expenditures of free-living field voles are positively correlated but reflect extrinsic rather than intrinsic effects (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 14057-14062; Speakman, J.R., Krol, E., Johnson, M.S., The functional significance of individual variation in basal metabolic rate (2004) Physiol. Biochem. Zool., 77, pp. 900-915; Steele, M.A., Tamiasaurus budsonicus (1998) Mammal Species, 586, pp. 1-9; Thomas, D.W., Martin, K., Lapierre, H., Doubly labeled water measurements of field metabolic rate in white-tailed ptarmigan - Variation in background isotope abundances and effect on CO 2 production (1994) Can. J. Zool., 72, pp. 1967-1972; Tinbergen, J.M., Verhulst, S., A fixed energetic ceiling to parental effort in the great tit? J (2000) Anim. Ecol., 69, pp. 323-334; Zar, J.H., (1999) Biostatistical Analysis, 4th Edn., , Prentice Hall, Upper Saddle River, NJ, USA. },
    ABSTRACT = { There is renewed focus on the ecological determinants of animal metabolism and recent comparative analyses support the physiological expectation that the field metabolic rate (FMR) of homeotherms should increase with declining ambient temperature. However, sustained elevation of FMR during prolonged, seasonal cold could be prevented by intrinsic limits constraining FMR to some multiple of basal metabolic rate (BMR) or extrinsic limits on resource abundance. We analysed previous measures of mammalian FMR and BMR to establish the effect of ambient temperature on both traits and found no support for intrinsic limitation. We also measured the FMR of a northern population of red squirrels (Tamiasciurus hudsonicus) exposed to ambient temperatures much colder than all but one previous study of mammal FMR. These measurements revealed levels of energy expenditure that are, unexpectedly, among the lowest ever recorded in homeotherms and that actually decrease as it gets colder. Collectively, these results suggest the metabolic niche space of cold climate endotherms may be much larger than previously recognized. © Blackwell Publishing Ltd/CNRS. },
    KEYWORDS = { Boreal forest Cost of living Doubly labelled water Energetics Nests Sciuridae Thermoregulation Winter Yukon boreal forest energy use low temperature metabolism small mammal thermoregulation Animalia Mammalia Sciuridae Tamiasciurus Tamiasciurus hudsonicus },
    OWNER = { brugerolles },
    TIMESTAMP = { 2007.12.05 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Colloque **************************** **********************************************************

1er au 3 mai 2019
UQAC

********************************************************** ********************* Traits **************************** **********************************************************

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Cours intensif sur l'analyse des pistes 
6-10 mai 2019, Université de Sherbrooke
Cours intensif : Taxonomie et méthodes d’échantillonnage en tourbières 
6-17 mai 2019, Université Laval
Dendrochronological Fieldweek 2019 
16-21 mai 2019, Station FERLD
Traits Fonctionnels des Organismes - École thématique internationale 
19-24 mai 2019, Porquerolles, France
Cours aux cycles supérieurs: Terrain avancé en géographie 
10-15 juin 2019, FERLD, Abitibi-Témiscamingue
École d'été « Drones et télédétection environnementale » 
13-14 juin 2019, Sherbrooke
Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...