RoyMcIntireCumming2016

Reference

Roy, C., McIntire, E.J.B. and Cumming, S.G. (2016) Assessing the spatial variability of density dependence in waterfowl populations. Ecography, 39(10):942-953. (Scopus )

Abstract

Population models commonly assume that the demographic parameters are spatially invariant, but there is considerable evidence that population growth rate (r) and the strength of density dependence (β) can vary over a species' range. To address this issue we developed a spatially explicit Gompertz population model based on the spatially varying coefficients approach to assess the spatial variation in population drivers. The model was fit to spatially stratified time series population estimates of the mallard Anas platyrhynchos in western North America. We included precipitation during the previous year and spring maximum temperature in the current year as environmental factors in the density dependent population model. Because density dependent models can give biased estimates for time series of abundance data, we fit a naïve model without informative priors and a model where we constrained the mean and variance of r to biologically realistic values that were derived via a comparative demography approach. In the naïve model, r and β were not separately identifiable and their values were overestimated, leading to unrealistic population growth. The naïve model also implied spatial variation in population r and the return time to equilibrium [1â�„(– β)] across the survey area. In contrast, in the informative model, r and the return time to equilibrium did not vary markedly among populations and were generally equal across populations. The effects of the climatic factors were similar across models. Population growth rates in the Prairie-pothole region were positively correlated with precipitation, while in Alaska rates were positively correlated with spring temperature. Although it has been argued in the past that adding ecological realism could help avoid the pitfalls associated with density dependent models, our results demonstrate that imposing constraints on the population parameters is still the best course of action. © 2015 The Authors

EndNote Format

You can import this reference in EndNote.

BibTeX-CSV Format

You can import this reference in BibTeX-CSV format.

BibTeX Format

You can copy the BibTeX entry of this reference below, orimport it directly in a software like JabRef .

@ARTICLE { RoyMcIntireCumming2016,
    AUTHOR = { Roy, C. and McIntire, E.J.B. and Cumming, S.G. },
    TITLE = { Assessing the spatial variability of density dependence in waterfowl populations },
    JOURNAL = { Ecography },
    YEAR = { 2016 },
    VOLUME = { 39 },
    NUMBER = { 10 },
    PAGES = { 942-953 },
    NOTE = { cited By 1 },
    ABSTRACT = { Population models commonly assume that the demographic parameters are spatially invariant, but there is considerable evidence that population growth rate (r) and the strength of density dependence (β) can vary over a species' range. To address this issue we developed a spatially explicit Gompertz population model based on the spatially varying coefficients approach to assess the spatial variation in population drivers. The model was fit to spatially stratified time series population estimates of the mallard Anas platyrhynchos in western North America. We included precipitation during the previous year and spring maximum temperature in the current year as environmental factors in the density dependent population model. Because density dependent models can give biased estimates for time series of abundance data, we fit a naïve model without informative priors and a model where we constrained the mean and variance of r to biologically realistic values that were derived via a comparative demography approach. In the naïve model, r and β were not separately identifiable and their values were overestimated, leading to unrealistic population growth. The naïve model also implied spatial variation in population r and the return time to equilibrium [1â�„(– β)] across the survey area. In contrast, in the informative model, r and the return time to equilibrium did not vary markedly among populations and were generally equal across populations. The effects of the climatic factors were similar across models. Population growth rates in the Prairie-pothole region were positively correlated with precipitation, while in Alaska rates were positively correlated with spring temperature. Although it has been argued in the past that adding ecological realism could help avoid the pitfalls associated with density dependent models, our results demonstrate that imposing constraints on the population parameters is still the best course of action. © 2015 The Authors },
    AFFILIATION = { Faculté de foresterie, de géographie et de géomatique and Centre d’étude de la Forêt, Univ. Laval, Pavillon Abitibi-Price, 2405 Rue de la TerrasseQC, Canada; Present address of CR: Canadian Wildlife Service, Environment Canada, 801-1550, Avenue d'EstimauvilleQC, Canada; Natural Resources Canada, Pacific Forestry Centre, 506 Burnside Road West, Victoria, BC, Canada },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.1111/ecog.01534 },
    SOURCE = { Scopus },
    URL = { https://www.scopus.com/inward/record.uri?eid=2-s2.0-84950105567&doi=10.1111%2fecog.01534&partnerID=40&md5=daf5fbea7a04f7575669ca7fc4a90c90 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Colloque **************************** **********************************************************

1er au 3 mai 2019
UQAC

********************************************************** ************* R à Québec 2019**************************** **********************************************************

********************************************************** ********************* Traits **************************** **********************************************************

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Cours intensif sur l'analyse des pistes 
6-10 mai 2019, Université de Sherbrooke
Cours intensif : Taxonomie et méthodes d’échantillonnage en tourbières 
6-17 mai 2019, Université Laval
Dendrochronological Fieldweek 2019 
16-21 mai 2019, Station FERLD
Traits Fonctionnels des Organismes - École thématique internationale 
19-24 mai 2019, Porquerolles, France
Cours aux cycles supérieurs: Terrain avancé en géographie 
10-15 juin 2019, FERLD, Abitibi-Témiscamingue
École d'été « Drones et télédétection environnementale » 
13-14 juin 2019, Sherbrooke
Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...