BerningerHariNikinmaaEtAl2004

Référence

Berninger, F., Hari, P., Nikinmaa, E., Lindholm, M. and Merilainen, J. (2004) Use of modeled photosynthesis and decomposition to describe tree growth at the northern tree line. Tree Physiology, 24(2):193-204.

Résumé

Growth of subarctic Scots pine (Pinus sylvestris L.) trees was investigated by a combination of process-based models and dendroecological approaches. Tree ring width indices were strongly autocorrelated and correlated with simulated photosynthetic production of the previous year and with organic matter N mineralization of the current year. An autoregressive model, with photosynthesis and N mineralization as external inputs, explained growth of the trees well. However, relationships for the period 1950-1992 differed significantly from relationships for the period 1876-1949; the slope of the regression of tree ring width index and photosynthesis was lower for the 1950-1992 period. Also, the autocorrelation structure of the data changed. First-order autocorrelation decreased and second-order autocorrelation increased from the earlier to the later period. This means that growth is becoming less sensitive to variations in photosynthetic production, whereas the relationships between growth and N mineralization are remaining fairly constant. We postulate that, although photosynthesis has increased in response to increasing CO2 concentrations, tree growth rate cannot parallel the increase in photosynthesis because potential growth rate is limited directly by temperature.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { BerningerHariNikinmaaEtAl2004,
    AUTHOR = { Berninger, F. and Hari, P. and Nikinmaa, E. and Lindholm, M. and Merilainen, J. },
    TITLE = { Use of modeled photosynthesis and decomposition to describe tree growth at the northern tree line },
    JOURNAL = { Tree Physiology },
    YEAR = { 2004 },
    VOLUME = { 24 },
    PAGES = { 193-204 },
    NUMBER = { 2 },
    NOTE = { 0829318X (ISSN) Cited By (since 1996): 3 Export Date: 24 April 2007 Source: Scopus CODEN: TRPHE Language of Original Document: English Correspondence Address: Berninger, F.; Department of Forest Ecology; University of Helsinki; P.O. Box 27 FI-00014 Helsinki, Finland; email: Frank.Berninger@Helsinki.fi References: Aalto, T., Carbon dioxide exchange of Scots pine shoots as estimated by a biochemical model and cuvette field measurements (1999) Silva Fenn., 32, pp. 321-333; Airola, T.R., Leinonen, L., (1994) Ympa?risto?n Yhdennetty Seuranta Mittaustuloksia 1991-1992 Ja Laskelman Yhteenveto 1987-1992. Ilmatieteen Laitos, 67p. , Helsinki, Finland; Arneth, A., Lloyd, J., Santruckova?, H., Bird, M.I., Grigoriev, S., Kalaschnikov, Y., Gleixner, G., Schulze, E.-D., Response of central Siberian Scots pine to soil water deficit and long-term trends in atmospheric CO2 concentration (2002) Global Biogeochem. Cycles, 16, pp. 10-25; Ball, J.T., Woodrow, I.E., Berry, J.A., A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions (1987) Progress in Photosynthesis Research, 4, pp. 221-224. , Ed. J. Biggins. Martinus Nijhoff, Dordrecht, The Netherlands; Bazzaz, F.A., The response of natural ecosystems to the rising global CO2 levels (1990) Annu. Rev. Ecol. Syst., 21, pp. 167-196; Berninger, F., Nikinmaa, E., Differences in pipe model parameters determine differences in growth and affect response of Scots pine to climate change (1997) Funct. Ecol., 11, pp. 146-156; Berninger, F., Bartelink, H., Krieger, H., Nikinmaa, E., Scha?fer, H., A comparative sensitivity analysis of different process-based forest models (1992) Response of Forest Ecosystems to Environmental Changes, pp. 520-528. , Eds. A. Teller, P. Mathy and J.N.R. Jeffers. Elsevier, London; Berninger, F., Sonninen, E., Aalto, T., Lloyd, J., Modelling 13C discrimination in tree rings (2000) Global Biogeochem. Cycles, 14, pp. 213-223; Bosatta, E., A?gren, G.I., Soil organic matter quality interpreted thermodynamically (1999) Soil Biol. Biochem., 31, pp. 1889-1891; Box, G.E.P., Jenkins, G.M., Reinsel, G.C., (1994) Time Series Analysis. 3rd Edn., 598p. , Prentice Hall, Upper Saddle River, NJ; Briffa, K.R., Jones, P.D., Schweingruber, F.H., Osborn, T.J., Shiyatov, S.G., Vaganov, E., Reduced sensitivity of recent tree growth to temperature at high latitudes (1998) Nature, 391, pp. 678-682; Briffa, K.R., Schweingruber, F.H., Jones, P.D., Osborn, T.J., Harris, I.C., Shiyatov, S.G., Grudd, H., Trees tell of past climates: But are they speaking less clearly today (1998) Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci., 353, pp. 65-73; Chen, W., Black, T.A., Yang, P.C., Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest (1993) Global Change Biol., 5, pp. 41-53; Cook, E.D., (1985) Arstan. Computer Program, , Columbia Univ., New York; Cowan, I.R., Stomatal behaviour and the environment (1977) Adv. Bot. Res., 4, pp. 117-227; Curtis, P.S., Wang, X.Z., A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology (1998) Oecologia, 113, pp. 299-313; Davidson, E.A., Trumbore, S.E., Amundson, R., Biogeochemistry - Soil warming and organic carbon content (2000) Nature, 408, pp. 789-790; Farquhar, G.D., Von Caemmerer, S., Modelling of photosynthetic response to environmental conditions (1982) Encyclopedia of Plant Physiology, 12 B, pp. 550-597. , Eds. O.L. Lange, P.S. Nobel, C.B. Osmond and H. Ziegler. Springer-Verlag, Berlin; Fritts, H., (1976) Tree Rings and Climate, 567p. , Academic Press, London; Grace, J., Berninger, F., Nagy, L., Impacts of climate change at the treeline (2002) Ann. Bot., 90, pp. 537-554; Graybill, D.A., Idso, S.B., Detecting the fertilization effect of aerial CO2 concentrations in tree ring chronologies (1993) Global Biogeochem. Cycles, 7, pp. 81-95; Grote, R., Erhard, M., Simulations of tree and stand development under different environmental conditions with a physiologically based model (1999) For. Ecol. Manage., 120, pp. 59-76; Hari, P., Arovaara, H., Detecting CO2 induced enhancement in the radial increment of trees. Evidence from the northern timber line (1988) Scand. J. For. Res., 3, pp. 67-74; Hari, P., Ma?kela?, A., Annual pattern of photosynthesis in Scots pine in the boreal zone (2003) Tree Physiol., 23, pp. 145-155; Ha?ttenschwiler, S., Ko?rner, C., Effects of elevated CO2 and increased nitrogen deposition on photosynthesis and growth of understory plants in spruce model ecosystems (1996) Oecologia, 106, pp. 172-180; Hogg, E.H., Simulation of interannual responses of trembling aspen stands to climatic variation and insect defoliation in western Canada (1999) Ecol. Model., 114, pp. 175-193; Holland, E.A., Braswell, B.H., Lamarque, J.F., Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestial ecosystems (1997) J. Geophys. Res., 102, pp. 15849-15866; Hustich, I., On the recent expansion of Scots pine in Northernmost Europe (1958) Fennia, 82, pp. 1-25; Jenkinson, D.S., The turnover of organic carbon and nitrogen in soil (1990) Philos. Trans. R. Soc. Lond. B Biol. Sci., 329, pp. 361-368; Johansson, M.B., Berg, B., Meentemeyer, V., Litter mass-loss rates in the late stages of decomposition in a climatic transect of pine forests. Long-term decomposition in a Scots pine forest (1995) Can. J. Bot., 73, pp. 1509-1521; Johnson, A.H., Cook, E.R., Siccama, T.G., Battles, J.J., McLaughlin, S.B., Leblanc, D., Wargo, P.M., Comment: Synchronic large-scale disturbances and red spruce decline (1995) Can. J. For. Res., 25, pp. 851-858; Kajander, J., Methodological aspects on river cryophenology exemplified by a tricentennial break-up time series from Tornio (1993) Geophysica, 29, pp. 73-95; Kienast, F., Luxmoore, R.J., Tree-ring analysis and conifer growth responses to increased atmospheric CO2 levels (1988) Oecologia, 76, pp. 487-495; Ko?rner, C., A re-assessment of high elevation treeline positions and their explanation (1998) Oecologia, 115, pp. 445-459; Ko?rner, C., (1999) Alpine Plant Life, 338p. , Springer-Verlag, Heidelberg; Korzukhin, M.D., Ter-Mikaelian, M.T., Wagner, R.G., Process versus empirical models: Which approach for forest ecosystem management? (1996) Can. J. For. Res., 26, pp. 879-887; LeBlanc, D.C., Temporal and spatial variation of oak growth-climate relationships along a pollution gradient in the mid-west United States (1993) Can. J. For. Res., 23, pp. 772-782; Leuning, R., A critical appraisal of a combined stomatal-photosynthesis model for C3 plants (1995) Plant Cell Environ., 18, pp. 339-355; Linder, S., Axelsson, B., Changes in carbon dioxide uptake and allocation patterns as a result of irrigation and fertilization in a Pinus sylvestris stand (1982) Carbon Uptake and Allocation in Subalpine Ecosystems As a Key to Management, pp. 38-44. , Ed. R.H. Waring. Oregon State Univ., Corvallis, OR; Lindholm, M., (1996) Reconstruction of Past Climate from Ring Width Chronologies of Scots Pine (Pinus sylvestris L.) at the Northern Forest Limit in Fennoscandia, 169p. , Univ. Joensuu, Publications in Sciences 40, Joensuu, Finland; Liski, J., Ilvesniemi, H., Ma?kela?, A., Westman, C.J., CO2 emissions from soil in response to climatic warming are overestimated - The decomposition of old soil organic matter is tolerant of temperature (1999) Ambio, 28, pp. 171-174; Ljung, G.M., Box, G.E.P., On a measure of lack of fit in time series models (1978) Biometrika, 65, pp. 297-303; Lloyd, J., Farquhar, G.D., The CO2 dependence of photosynthesis, plant growth responses to elevated CO2 and their interactions with soil nutrient status. 1. General principles and forest ecosystems (1996) Funct. Ecol., 10, pp. 4-33; Lloyd, J., Wong, S.-C., Styles, J.M., Batten, D., Priddle, R., Turnbull, C., McConchie, C.A., Measuring and modelling whole tree gas exchange (1995) Aust. J. Plant. Physiol., 22, pp. 987-1000; Ma?kinen, H., No?jd, P., Mielika?inen, K., Climatic signal in annual growth variation of Norway spruce (Picea abies) along a transect from central Finland to the Arctic timberline (2000) Can. J. For. Res., 30, pp. 769-777; Medlyn, B.E., Badeck, F.W., De Pury, D.G.G., Effects of elevated [CO2] on photosynthesis in European forest species: A meta-analysis of model parameters (1999) Plant Cell Environ., 22, pp. 1475-1495; Meko, D., (1981) Applications of Box-Jenkins Methods of Time-series Analysis to Reconstruction of Drought from Tree Rings, 140p. , Ph.D. Diss., Univ. Arizona, Tuscan, AZ; Melillo, J.M., Steudler, P.A., Aber, J.D., Soil warming and carbon-cycle feedbacks to the climate system (2002) Science, 298, pp. 2173-2176; Mielika?inen, K., Timonen, M., Growth trends in Pinus sylvestris L. in unmanaged and regularly managed stands in southern and central Finland (1996) Growth Trends in European Forests, pp. 41-59. , Eds. H. Spiecker, K. Mielika?inen, M. Ko?hl and J.P. Skovsgaard. Springer-Verlag, Berlin; Mikola, P., On the variations in tree growth and their significance for growth studies (1950) Commun. Inst. For. Fenn., 38, pp. 1-125; Monserud, R.A., Time-series analyses of tree-ring chronologies (1986) For. Sci., 32, pp. 349-372; Monserud, R.A., Marshall, J.D., Time series analysis of ?13C from tree rings. I. Time trends and autocorrelation (2001) Tree Physiol., 21, pp. 110-122; Nissinen, A., Hari, P., Effects of nitrogen deposition on tree growth and soil nutrients in boreal Scots pine stands (1998) Environ. Pollut., 102, pp. 61-68; No?jd, P., Hari, P., The effect of temperature on the radial growth of Scots pine in northernmost Fennoscandia (2001) For. Ecol. Manage., 142, pp. 65-77; Parysow, P., Gertner, G., The role of interactions in hypothesis testing of ecological scenarios with process models (1999) Ecol. Model., 116, pp. 107-124; Pietarinen, I., Kanninen, M., Hari, P., Kelloma?ki, S., A simulation model for daily growth of shoots, needles, and stem diameter in Scots pine trees (1982) For. Sci., 28, pp. 573-581; Priestley, M.B., (1988) Non-linear and Non-stationary Time Series Analysis, 237p. , Academic Press, London; Rathgeber, C., Guiot, J., Eduard, J.J., Utilisation d'un mode?le bioge?ochimique en dendroe?cologie. Application au pin Cembro (2000) C. R. Acad. Sci. Ser. III Life Sci., 323, pp. 489-497; Reams, G.C., Van Deusen, P.C., Synchronic large scale disturbances and red spruce growth decline (1993) Can. J. For. Res., 23, pp. 1361-1374; Schweingruber, F., (1996) Tree Rings and Environment: Dendroecology, 609p. , Haupt Verlag, Bern, Switzerland; Scuderi, L.A., Schaaf, C.B., Orth, K.U., Band, L.E., Alpine treeline growth variability - Simulation using an ecosystem process model (1993) Arct. Alp. Res., 25, pp. 175-182; Spieker, H., Mielika?inen, K., Ko?hl, M., Skovsgaard, J., (1996) Growth Trends in European Forests, 356p. , Springer-Verlag, Berlin; Stark, S., Wardle, D.A., Ohtonen, R., Helle, T., Yeates, G.W., The effect of reindeer grazing on decomposition, mineralization and soil biota in a dry oligotrophic Scots pine forest (2000) Oikos, 90, pp. 301-310; Stitt, M., Krapp, A., The interaction between elevated carbon dioxide and nitrogen nutrition: The physiological and molecular background (1999) Plant Cell Environ., 22, pp. 583-621; Sto?cklin, J., Ko?rner, C., Recruitment and mortality of Pinus sylvestris near the nordic treeline: The role of climate change and herbivory (1999) Ecol. Bull., 47, pp. 168-177; Stro?mgren, M., Linder, S., Effects of nutrition and soil warming on stemwood production in a boreal Norway spruce stand (2002) Global Change Biol., 8, pp. 1195-1204; Suni, T., Berninger, F., Markkanen, T., Keronen, P., Rannik, U?., Vesala, T., Interannual variability of growing-season timing, length, and CO 2 exchange in a boreal forest (2003) J. Geophys. Res., 108 (D9), p. 4265. , DOI:10.1029/2002JD002381; Tamm, C.O., Nitrogen in terrestial ecosystems. Questions of productivity, vegetational changes and ecosystem stability (1991) Ecological Studies 81, 115p. , Springer-Verlag, Berlin; Tybirk, K., Nilsson, M.C., Michelson, A., Nordic Empetrum dominated ecosystems: Function and susceptibility to environmental changes (2000) Ambio, 29, pp. 90-97; Vaganov, E.A., Hughes, M.K., Kirdyanov, A.H., Schweingruber, F.H., Silkin, P.P., Influence of snowfall and melt timing on tree growth in subarctic Eurasia (1999) Nature, 400, pp. 149-151; Vanclay, J.K., (1994) Modelling Forest Growth and Yield: Applications to Mixed Tropical Forests, 312p. , CAB International, Wallingford, U.K; Vanninen, P., Ma?kela?, A., Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland (1999) Tree Physiol., 19, pp. 823-830; Vapaavuori, E.M., Vuorinen, A.H., Aphalo, P.J., Smolander, H., Relationship between net photosynthesis and nitrogen in Scots pine: Seasonal variation in seedlings and shoots (1995) Plant Soil, 168-169, pp. 263-270; Wahlstro?m, E., Hallanaro, E.-L., Manninen, S., (1996) The Future of the Finnish Environment, 272p. , Edita, The Finnish Environ. Inst., Helsinki, Finland; Weih, M., Karlsson, P.S., Growth response of altitudinal ecotypes of mountain birch to temperature and fertilisation (1999) Oecologia, 119, pp. 16-23; Wong, S.C., Cowan, I.R., Farquhar, G.D., Stomatal conductance correlates with photosynthetic capacity (1979) Nature, 282, pp. 424-426. },
    ABSTRACT = { Growth of subarctic Scots pine (Pinus sylvestris L.) trees was investigated by a combination of process-based models and dendroecological approaches. Tree ring width indices were strongly autocorrelated and correlated with simulated photosynthetic production of the previous year and with organic matter N mineralization of the current year. An autoregressive model, with photosynthesis and N mineralization as external inputs, explained growth of the trees well. However, relationships for the period 1950-1992 differed significantly from relationships for the period 1876-1949; the slope of the regression of tree ring width index and photosynthesis was lower for the 1950-1992 period. Also, the autocorrelation structure of the data changed. First-order autocorrelation decreased and second-order autocorrelation increased from the earlier to the later period. This means that growth is becoming less sensitive to variations in photosynthetic production, whereas the relationships between growth and N mineralization are remaining fairly constant. We postulate that, although photosynthesis has increased in response to increasing CO2 concentrations, tree growth rate cannot parallel the increase in photosynthesis because potential growth rate is limited directly by temperature. },
    KEYWORDS = { Climate change Reduced sensitivity Tree rings autocorrelation climate change decomposition growth photosynthesis tree tree ring Pinus sylvestris },
    OWNER = { brugerolles },
    TIMESTAMP = { 2007.12.04 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...