St-DenisKneeshawBelangerEtAl2017

Référence

St-Denis, A., Kneeshaw, D.D., Belanger, N., Simard, S., Laforest-Lapointe, I., Messier, C. (2017) Species-specific responses to forest soil inoculum in planted trees in an abandoned agricultural field. Applied Soil Ecology, 112:1-10. (Scopus )

Résumé

Tree plantations are commonly used to restore abandoned agricultural fields with varying degrees of success. Agricultural soils differ from forest soils in nutrient availability and microbial communities. The objective of this study was to test the effect of adding small amounts of forest soil on the survival, growth and rates of mycorrhizal fungal colonization of trees planted in an abandoned agricultural field over the crucial first three growing seasons. Seedlings of two arbuscular mycorrhizal (AM) and two ectomycorrhizal (EM) tree species were planted in an abandoned agricultural field. Soil inocula were taken from four forest stands, each dominated by one of the planted species. Half of the soil samples were sterilized before inoculation to distinguish microbial from nutrient effects. The effect of the quantity of soil inoculum added was tested using 300 and 1500 ml of forest soil. Tree mortality was low and did not vary between treatments. The growth of EM tree species responded, positively or negatively, to forest soil inoculation. A negative feedback was detected on the growth of red oak seedlings inoculated with red oak soil. Seedlings inoculated with EM sterilized soils were smaller than control seedlings, presumably due to lower nutrient availability of EM forest soils compared to agricultural field soil. The majority of the effects, either positive or negative, were observed the first year. After three seasons of growth, only yellow birch seedlings that had received 1500 ml of non-sterilized red oak soil still benefited from soil inoculation. More research is needed in nutrient-limited soils to determine whether inoculation would have greater or longer term benefits on tree survival and growth. © 2016

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { St-DenisKneeshawBelangerEtAl2017,
    AUTHOR = { St-Denis, A. and Kneeshaw, D.D. and Belanger, N. and Simard, S. and Laforest-Lapointe, I. and Messier, C. },
    TITLE = { Species-specific responses to forest soil inoculum in planted trees in an abandoned agricultural field },
    JOURNAL = { Applied Soil Ecology },
    YEAR = { 2017 },
    VOLUME = { 112 },
    PAGES = { 1-10 },
    NOTE = { cited By 0 },
    ABSTRACT = { Tree plantations are commonly used to restore abandoned agricultural fields with varying degrees of success. Agricultural soils differ from forest soils in nutrient availability and microbial communities. The objective of this study was to test the effect of adding small amounts of forest soil on the survival, growth and rates of mycorrhizal fungal colonization of trees planted in an abandoned agricultural field over the crucial first three growing seasons. Seedlings of two arbuscular mycorrhizal (AM) and two ectomycorrhizal (EM) tree species were planted in an abandoned agricultural field. Soil inocula were taken from four forest stands, each dominated by one of the planted species. Half of the soil samples were sterilized before inoculation to distinguish microbial from nutrient effects. The effect of the quantity of soil inoculum added was tested using 300 and 1500 ml of forest soil. Tree mortality was low and did not vary between treatments. The growth of EM tree species responded, positively or negatively, to forest soil inoculation. A negative feedback was detected on the growth of red oak seedlings inoculated with red oak soil. Seedlings inoculated with EM sterilized soils were smaller than control seedlings, presumably due to lower nutrient availability of EM forest soils compared to agricultural field soil. The majority of the effects, either positive or negative, were observed the first year. After three seasons of growth, only yellow birch seedlings that had received 1500 ml of non-sterilized red oak soil still benefited from soil inoculation. More research is needed in nutrient-limited soils to determine whether inoculation would have greater or longer term benefits on tree survival and growth. © 2016 },
    AUTHOR_KEYWORDS = { Abandoned agricultural field; Ecological restoration; Forest soil inoculation; Mycorrhizae; Tree growth; Tree seedlings },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.1016/j.apsoil.2016.12.008 },
    SOURCE = { Scopus },
    URL = { https://www.scopus.com/inward/record.uri?eid=2-s2.0-85008324962&doi=10.1016%2fj.apsoil.2016.12.008&partnerID=40&md5=2bdf4419891f6d2077decb2a02eb0cb2 },
}

********************************************************** *************************** FRQNT ************************ **********************************************************

Un regroupement stratégique du

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - ABC CBA 2020 ****************** **********************************************************

31 mai au 4 juin 2020

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...