MacDonaldBelangerHendershot2004

Référence

MacDonald, J.D., Belanger, N. and Hendershot, W.H. (2004) Column leaching using dry soil to estimate solid-solution partitioning observed in zero-tension lysimeters. 2. Trace metals. Soil and Sediment Contamination, 13(4):375-390. (Scopus )

Résumé

The fundamental questions revolving around research into trace metals in soils are how much, and in what form, do metals exist in soil solutions. The mobile phase of soil solutions can be sampled by lysimeters, but cannot be consistently and accurately reproduced in laboratory extractions. We used a column leaching method developed specifically to produce solutions that were similar to those of lysimeters from northern forest podzolic soils. We hoped to yield reasonable estimates of the partitioning of Cd, Cu, Ni, Pb and Zn between the solid and solution phases observed in the field. The column leaching method produced solutions that were similar to lysimeter solutions in the concentrations of metals in solution. Partitioning coefficients (log K <sub>d</sub>) calculated from average lysimeters solution concentrations ranged from 2.8 to 3.9 for Cd, 3.5 to 4.2 for Cu, 3.1 to 4.3 for Ni, 3.9 to 5.7 for Pb and 2.8 to 3.6 for Zn. Laboratory extractions produced very similar log Kd values ranging from 3.4 to 3.9 for Cd, 3.4 to 3.9 for Cu, 3.4 to 4.1 for Ni, 4.1 to 5.2 for Pb and 3.2 to 3.5 for Zn. According to a semi-mechanistic regression model based on observed lysimeter concentrations, the metal concentrations in solution were appropriate relative to known factors that influence metal partitioning in soils: pH and the concentrations of total metals and dissolved organic carbon. Partitioning coefficients based on laboratory extractions in the literature were on average an order of magnitude greater than those observed in lysimeters. When compared to the results of other laboratory extractions, the proposed extraction procedure appeared to be an effective method to estimate the chemistry of soil solutions in the field.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { MacDonaldBelangerHendershot2004,
    AUTHOR = { MacDonald, J.D. and Belanger, N. and Hendershot, W.H. },
    TITLE = { Column leaching using dry soil to estimate solid-solution partitioning observed in zero-tension lysimeters. 2. Trace metals },
    JOURNAL = { Soil and Sediment Contamination },
    YEAR = { 2004 },
    VOLUME = { 13 },
    PAGES = { 375-390 },
    NUMBER = { 4 },
    ABSTRACT = { The fundamental questions revolving around research into trace metals in soils are how much, and in what form, do metals exist in soil solutions. The mobile phase of soil solutions can be sampled by lysimeters, but cannot be consistently and accurately reproduced in laboratory extractions. We used a column leaching method developed specifically to produce solutions that were similar to those of lysimeters from northern forest podzolic soils. We hoped to yield reasonable estimates of the partitioning of Cd, Cu, Ni, Pb and Zn between the solid and solution phases observed in the field. The column leaching method produced solutions that were similar to lysimeter solutions in the concentrations of metals in solution. Partitioning coefficients (log K <sub>d</sub>) calculated from average lysimeters solution concentrations ranged from 2.8 to 3.9 for Cd, 3.5 to 4.2 for Cu, 3.1 to 4.3 for Ni, 3.9 to 5.7 for Pb and 2.8 to 3.6 for Zn. Laboratory extractions produced very similar log Kd values ranging from 3.4 to 3.9 for Cd, 3.4 to 3.9 for Cu, 3.4 to 4.1 for Ni, 4.1 to 5.2 for Pb and 3.2 to 3.5 for Zn. According to a semi-mechanistic regression model based on observed lysimeter concentrations, the metal concentrations in solution were appropriate relative to known factors that influence metal partitioning in soils: pH and the concentrations of total metals and dissolved organic carbon. Partitioning coefficients based on laboratory extractions in the literature were on average an order of magnitude greater than those observed in lysimeters. When compared to the results of other laboratory extractions, the proposed extraction procedure appeared to be an effective method to estimate the chemistry of soil solutions in the field. },
    COMMENT = { Cited By (since 1996): 4 Export Date: 11 February 2010 Source: Scopus CODEN: SSCOC doi: 10.1080/10588330490466021 },
    ISSN = { 10588337 (ISSN) },
    OWNER = { Luc },
    TIMESTAMP = { 2010.02.11 },
    URL = { http://www.scopus.com/inward/record.url?eid=2-s2.0-3242681814&partnerID=40&md5=4d7fa603cb865b6c3d8836abd768634e },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...