MartinFentonMorin2018
Reference
Martin, M., Fenton, N.J., Morin, H. (2018) Structural diversity and dynamics of boreal old-growth forests case study in Eastern Canada. Forest Ecology and Management, 422:125 - 136. (URL )
Abstract
Old-growth stands are considered as key components of boreal forest diversity and their preservation is largely integrated into management plans. However, while the differences between old-growth and young forests have largely been studied, little is known about the diversity of boreal old-growth forests. In managed landscapes, the efficacy of old-growth conservation plans may be reduced depending on how these old-growth forests are considered: as a single, homogeneous and steady-state forest type or as multiple, diverse and dynamic forest types. To fulfil this gap, our objectives were: (1) to create a typology of old-growth boreal structures; (2) to observe how these structures are influenced by environmental and temporal parameters; and (3) to elaborate a succession model of old-growth structural dynamics along temporal and environmental gradients. Seventy-one mature and overmature stands were sampled within a 2200 km2 territory situated in Eastern Canada. Cluster analysis divided the sampled stands into two even-aged types, three transition old-growth types and six true old-growth types. Slope, minimum time since last fire and organic horizon depth were the three environmental and temporal parameters influencing the old-growth structures. Paludification-related productivity decline was present in only one old-growth forest type, while the other sites remained productive. These results allowed the creation of three succession models of the dynamics of old-growth stands in the boreal forest of eastern Canada. Boreal stands can undergo numerous structural changes once the old-growth succession process is initiated. An increase in structural diversity when the true old-growth stage is reached, coupled with a variety of secondary disturbance characteristics, favours multiple pathways of structural evolution of these ecosystems over time. Therefore, forest management planning should incorporate this complexity to improve the preservation of old-growth forests in managed territories.
EndNote Format
You can import this reference in EndNote.
BibTeX-CSV Format
You can import this reference in BibTeX-CSV format.
BibTeX Format
You can copy the BibTeX entry of this reference below, orimport it directly in a software like JabRef .
@ARTICLE { MartinFentonMorin2018,
AUTHOR = { Martin, M. and Fenton, N.J. and Morin, H. },
TITLE = { Structural diversity and dynamics of boreal old-growth forests case study in Eastern Canada },
JOURNAL = { Forest Ecology and Management },
YEAR = { 2018 },
VOLUME = { 422 },
PAGES = { 125 - 136 },
ISSN = { 0378-1127 },
ABSTRACT = { Old-growth stands are considered as key components of boreal forest diversity and their preservation is largely integrated into management plans. However, while the differences between old-growth and young forests have largely been studied, little is known about the diversity of boreal old-growth forests. In managed landscapes, the efficacy of old-growth conservation plans may be reduced depending on how these old-growth forests are considered: as a single, homogeneous and steady-state forest type or as multiple, diverse and dynamic forest types. To fulfil this gap, our objectives were: (1) to create a typology of old-growth boreal structures; (2) to observe how these structures are influenced by environmental and temporal parameters; and (3) to elaborate a succession model of old-growth structural dynamics along temporal and environmental gradients. Seventy-one mature and overmature stands were sampled within a 2200 km2 territory situated in Eastern Canada. Cluster analysis divided the sampled stands into two even-aged types, three transition old-growth types and six true old-growth types. Slope, minimum time since last fire and organic horizon depth were the three environmental and temporal parameters influencing the old-growth structures. Paludification-related productivity decline was present in only one old-growth forest type, while the other sites remained productive. These results allowed the creation of three succession models of the dynamics of old-growth stands in the boreal forest of eastern Canada. Boreal stands can undergo numerous structural changes once the old-growth succession process is initiated. An increase in structural diversity when the true old-growth stage is reached, coupled with a variety of secondary disturbance characteristics, favours multiple pathways of structural evolution of these ecosystems over time. Therefore, forest management planning should incorporate this complexity to improve the preservation of old-growth forests in managed territories. },
DOI = { https://doi.org/10.1016/j.foreco.2018.04.007 },
KEYWORDS = { Old-growth, Boreal forest, Typology, Overmature, Succession, Conservation },
URL = { http://www.sciencedirect.com/science/article/pii/S0378112718301257 },
}