CerrejónValeriaMunozEtAl2022

Référence

Cerrejón, C., Valeria, O., Muñoz, J., Fenton, N.J. (2022) Small but visible: Predicting rare bryophyte distribution and richness patterns using remote sensing-based ensembles of small models. PLoS ONE, 17(1 January). (Scopus )

Résumé

In Canadian boreal forests, bryophytes represent an essential component of biodiversity and play a significant role in ecosystem functioning. Despite their ecological importance and sensitivity to disturbances, bryophytes are overlooked in conservation strategies due to knowledge gaps on their distribution, which is known as the Wallacean shortfall. Rare species deserve priority attention in conservation as they are at a high risk of extinction. This study aims to elaborate predictive models of rare bryophyte species in Canadian boreal forests using remote sensing-derived predictors in an Ensemble of Small Models (ESMs) framework. We hypothesize that high ESMs-based prediction accuracy can be achieved for rare bryophyte species despite their low number of occurrences. We also assess if there is a spatial correspondence between rare and overall bryophyte richness patterns. The study area is located in western Quebec and covers 72,292 km2. We selected 52 bryophyte species with <30 occurrences from a presence-only database (214 species, 389 plots in total). ESMs were built from Random Forest and Maxent techniques using remote sensing-derived predictors related to topography and vegetation. Lee’s L statistic was used to assess and map the spatial relationship between rare and overall bryophyte richness patterns. ESMs yielded poor to excellent prediction accuracy (AUC > 0.5) for 73% of the modeled species, with AUC values > 0.8 for 19 species, which confirmed our hypothesis. In fact, ESMs provided better predictions for the rarest bryophytes. Likewise, our study revealed a spatial concordance between rare and overall bryophyte richness patterns in different regions of the study area, which have important implications for conservation planning. This study demonstrates the potential of remote sensing for assessing and making predictions on inconspicuous and rare species across the landscape and lays the basis for the eventual inclusion of bryophytes into sustainable development planning. Copyright: © 2022 Cerrejón et al.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { CerrejónValeriaMunozEtAl2022,
    AUTHOR = { Cerrejón, C. and Valeria, O. and Muñoz, J. and Fenton, N.J. },
    JOURNAL = { PLoS ONE },
    TITLE = { Small but visible: Predicting rare bryophyte distribution and richness patterns using remote sensing-based ensembles of small models },
    YEAR = { 2022 },
    NUMBER = { 1 January },
    VOLUME = { 17 },
    ABSTRACT = { In Canadian boreal forests, bryophytes represent an essential component of biodiversity and play a significant role in ecosystem functioning. Despite their ecological importance and sensitivity to disturbances, bryophytes are overlooked in conservation strategies due to knowledge gaps on their distribution, which is known as the Wallacean shortfall. Rare species deserve priority attention in conservation as they are at a high risk of extinction. This study aims to elaborate predictive models of rare bryophyte species in Canadian boreal forests using remote sensing-derived predictors in an Ensemble of Small Models (ESMs) framework. We hypothesize that high ESMs-based prediction accuracy can be achieved for rare bryophyte species despite their low number of occurrences. We also assess if there is a spatial correspondence between rare and overall bryophyte richness patterns. The study area is located in western Quebec and covers 72,292 km2. We selected 52 bryophyte species with <30 occurrences from a presence-only database (214 species, 389 plots in total). ESMs were built from Random Forest and Maxent techniques using remote sensing-derived predictors related to topography and vegetation. Lee’s L statistic was used to assess and map the spatial relationship between rare and overall bryophyte richness patterns. ESMs yielded poor to excellent prediction accuracy (AUC > 0.5) for 73% of the modeled species, with AUC values > 0.8 for 19 species, which confirmed our hypothesis. In fact, ESMs provided better predictions for the rarest bryophytes. Likewise, our study revealed a spatial concordance between rare and overall bryophyte richness patterns in different regions of the study area, which have important implications for conservation planning. This study demonstrates the potential of remote sensing for assessing and making predictions on inconspicuous and rare species across the landscape and lays the basis for the eventual inclusion of bryophytes into sustainable development planning. Copyright: © 2022 Cerrejón et al. },
    ART_NUMBER = { e0260543 },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.1371/journal.pone.0260543 },
    OWNER = { Daniel Lesieur },
    SOURCE = { Scopus },
    TIMESTAMP = { 2022-01-17 },
    URL = { https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122590060&doi=10.1371%2fjournal.pone.0260543&partnerID=40&md5=42aff02c51b798c6244e7cb06aed6da4 },
}

********************************************************** *************************** FRQNT ************************ **********************************************************

Le CEF est un
regroupement stratégique du

********************************************************** *********************** Infolettre *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Colloque du CEF ****************** **********************************************************

********************************************************** ***************** Formations et Écoles d'été ****************** **********************************************************

Formations et Écoles

********************************************************** *************** Pub - Colloque Mycorhize ***************** **********************************************************

********************************************************** ********* Mémoire CEF Changements Climatiques ************ **********************************************************

**********************************************************

***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

  • Voici une liste (clairement incomplète) des packages R axés sur l'écologie! N'hésitez pas à ajouter à la liste

Voir les autres...