GrantMargolisBarrEtAl2009

Référence

Grant, R.F., Margolis, H.A., Barr, A.G., Black, T.A., Dunn, A.L., Bernier, P.Y. and Bergeron, O. (2009) Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales. Tree Physiology, 29:1-17.

Résumé

Net ecosystem productivity (NEP) of boreal coniferous forests is believed to rise with climate warming, thereby offsetting some of the rise in atmospheric CO2 concentration (Ca) by which warming is caused. However, the response of conifer NEP to warming may vary seasonally, with rises in spring and declines in summer. To gain more insight into this response, we compared changes in CO2 exchange measured by eddy covariance and simulated by the ecosystem process model ecosys under rising mean annual air temperatures (Ta) during 2004–2006 at black spruce stands in Saskatchewan, Manitoba and Quebec. Hourly net CO2 uptake was found to rise with warming at Ta < 15 C and to decline with warming at Ta > 20 C. As mean annual Ta rose from 2004 to 2006, increases in net CO2 uptake with warming at lower Ta were greater than declines with warming at higher Ta so that annual gross primary productivity and hence NEP increased. Increases in net CO2 uptake measured at lower Ta were explained in the model by earlier recovery of photosynthetic capacity in spring, and by increases in carboxylation activity, using parameters for the Arrhenius temperature functions of key carboxylation processes derived from independent experiments. Declines in net CO2 uptake measured at higher Ta were explained in the model by sharp declines in mid-afternoon canopy stomatal conductance (gc) under higher vapor pressure deficits (D). These declines were modeled from a hydraulic constraint to water uptake imposed by low axial conductivity of conifer roots and boles that forced declines in canopy water potential (wc), and hence in gc under higher D when equilibrating water uptake with transpiration. In a model sensitivity study, the contrasting responses of net CO2 uptake to specified rises in Ta caused annual NEP of black spruce in the model to rise with increases in Ta of up to 6 C, but to decline with further increases at midcontinental sites with lower precipitation. However, these contrasting responses to warming also indicate that rises in NEP with climate warming would depend on the seasonality (spring versus summer) as well as the magnitude of rises in Ta.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { GrantMargolisBarrEtAl2009,
    AUTHOR = { Grant, R.F. and Margolis, H.A. and Barr, A.G. and Black, T.A. and Dunn, A.L. and Bernier, P.Y. and Bergeron, O. },
    TITLE = { Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales },
    JOURNAL = { Tree Physiology },
    YEAR = { 2009 },
    VOLUME = { 29 },
    PAGES = { 1-17 },
    ABSTRACT = { Net ecosystem productivity (NEP) of boreal coniferous forests is believed to rise with climate warming, thereby offsetting some of the rise in atmospheric CO2 concentration (Ca) by which warming is caused. However, the response of conifer NEP to warming may vary seasonally, with rises in spring and declines in summer. To gain more insight into this response, we compared changes in CO2 exchange measured by eddy covariance and simulated by the ecosystem process model ecosys under rising mean annual air temperatures (Ta) during 2004–2006 at black spruce stands in Saskatchewan, Manitoba and Quebec. Hourly net CO2 uptake was found to rise with warming at Ta < 15 C and to decline with warming at Ta > 20 C. As mean annual Ta rose from 2004 to 2006, increases in net CO2 uptake with warming at lower Ta were greater than declines with warming at higher Ta so that annual gross primary productivity and hence NEP increased. Increases in net CO2 uptake measured at lower Ta were explained in the model by earlier recovery of photosynthetic capacity in spring, and by increases in carboxylation activity, using parameters for the Arrhenius temperature functions of key carboxylation processes derived from independent experiments. Declines in net CO2 uptake measured at higher Ta were explained in the model by sharp declines in mid-afternoon canopy stomatal conductance (gc) under higher vapor pressure deficits (D). These declines were modeled from a hydraulic constraint to water uptake imposed by low axial conductivity of conifer roots and boles that forced declines in canopy water potential (wc), and hence in gc under higher D when equilibrating water uptake with transpiration. In a model sensitivity study, the contrasting responses of net CO2 uptake to specified rises in Ta caused annual NEP of black spruce in the model to rise with increases in Ta of up to 6 C, but to decline with further increases at midcontinental sites with lower precipitation. However, these contrasting responses to warming also indicate that rises in NEP with climate warming would depend on the seasonality (spring versus summer) as well as the magnitude of rises in Ta. },
    OWNER = { brugerolles },
    TIMESTAMP = { 2009.01.27 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Colloque **************************** **********************************************************

1er au 3 mai 2019
UQAC

********************************************************** ********************* Traits **************************** **********************************************************

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Cours intensif sur l'analyse des pistes 
6-10 mai 2019, Université de Sherbrooke
Cours intensif : Taxonomie et méthodes d’échantillonnage en tourbières 
6-17 mai 2019, Université Laval
Dendrochronological Fieldweek 2019 
16-21 mai 2019, Station FERLD
Traits Fonctionnels des Organismes - École thématique internationale 
19-24 mai 2019, Porquerolles, France
Cours aux cycles supérieurs: Terrain avancé en géographie 
10-15 juin 2019, FERLD, Abitibi-Témiscamingue
École d'été « Drones et télédétection environnementale » 
13-14 juin 2019, Sherbrooke
Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...