SavageVellend2015

Reference

Savage, J., Vellend, M. (2015) Elevational shifts, biotic homogenization and time lags in vegetation change during 40 years of climate warming. Ecography, 38(6):546-555. (Scopus )

Abstract

Many species show evidence of climate-driven distribution shifts towards higher elevations, but given the tremendous variation among species and regions, we lack an understanding of the community-level consequences of such shifts. Here we test for signatures of climate warming impacts using a repeat survey of semi-permanent vegetation plots in 1970 and 2012 in a montane protected area in southern Québec, Canada, where daily maximum and minimum temperatures have increased by ~1.6°C and ~2.5°C over the same time period. As predicted, the abundance-weighted mean elevations of species distributions increased significantly over time (9 m/decade). A community temperature index (CTI) was calculated as the abundance-weighted mean of the median temperature across occurrences within each species geographic range in eastern North America. CTI did not vary significantly over time, although the raw magnitude of change (+ 0.2°C) matched the expectation based on the upward shift in distributions of 9 m/decade. Species composition of high elevation sites converged over time toward that observed at low elevation, although compositional changes at low elevation sites were more modest. As a consequence, the results of a multivariate analysis showed a decline in among-plot compositional variability (i.e. beta diversity) over time, thus providing some of the first empirical evidence linking climate warming with biotic homogenization. Finally, plot-scale species richness showed a marked increase of ~25% on average. Overall, elevational distribution shifts, biodiversity change, and biotic homogenization over the past four decades have been consistent with predictions based on climate warming, although the rate of change has been relatively slow, suggesting substantial time lags in biotic responses to climate change. © 2014 The Authors.

EndNote Format

You can import this reference in EndNote.

BibTeX-CSV Format

You can import this reference in BibTeX-CSV format.

BibTeX Format

You can copy the BibTeX entry of this reference below, orimport it directly in a software like JabRef .

@ARTICLE { SavageVellend2015,
    AUTHOR = { Savage, J. and Vellend, M. },
    TITLE = { Elevational shifts, biotic homogenization and time lags in vegetation change during 40 years of climate warming },
    JOURNAL = { Ecography },
    YEAR = { 2015 },
    VOLUME = { 38 },
    PAGES = { 546-555 },
    NUMBER = { 6 },
    NOTE = { cited By 0 },
    ABSTRACT = { Many species show evidence of climate-driven distribution shifts towards higher elevations, but given the tremendous variation among species and regions, we lack an understanding of the community-level consequences of such shifts. Here we test for signatures of climate warming impacts using a repeat survey of semi-permanent vegetation plots in 1970 and 2012 in a montane protected area in southern Québec, Canada, where daily maximum and minimum temperatures have increased by ~1.6°C and ~2.5°C over the same time period. As predicted, the abundance-weighted mean elevations of species distributions increased significantly over time (9 m/decade). A community temperature index (CTI) was calculated as the abundance-weighted mean of the median temperature across occurrences within each species geographic range in eastern North America. CTI did not vary significantly over time, although the raw magnitude of change (+ 0.2°C) matched the expectation based on the upward shift in distributions of 9 m/decade. Species composition of high elevation sites converged over time toward that observed at low elevation, although compositional changes at low elevation sites were more modest. As a consequence, the results of a multivariate analysis showed a decline in among-plot compositional variability (i.e. beta diversity) over time, thus providing some of the first empirical evidence linking climate warming with biotic homogenization. Finally, plot-scale species richness showed a marked increase of ~25% on average. Overall, elevational distribution shifts, biodiversity change, and biotic homogenization over the past four decades have been consistent with predictions based on climate warming, although the rate of change has been relatively slow, suggesting substantial time lags in biotic responses to climate change. © 2014 The Authors. },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.1111/ecog.01131 },
    SOURCE = { Scopus },
    URL = { http://www.scopus.com/inward/record.url?eid=2-s2.0-84930156411&partnerID=40&md5=2b0cdce1a2ada380f173f413a574f69c },
}

********************************************************** *************************** FRQNT ************************ **********************************************************

Un regroupement stratégique du

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - ABC CBA 2020 ****************** **********************************************************

31 mai au 4 juin 2020

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...