MatthesKnoxSturtevantEtAl2015

Reference

Matthes, J.H., Knox, S.H., Sturtevant, C., Sonnentag, O., Verfaillie, J., Baldocchi, D. (2015) Predicting landscape-scale CO2 flux at a pasture and rice paddy with long-term hyperspectral canopy reflectance measurements. Biogeosciences, 12(15):4577-4594. (Scopus )

Abstract

Measurements of hyperspectral canopy reflectance provide a detailed snapshot of information regarding canopy biochemistry, structure and physiology. In this study, we collected 5 years of repeated canopy hyperspectral reflectance measurements for a total of over 100 site visits within the flux footprints of two eddy covariance towers at a pasture and rice paddy in northern California. The vegetation at both sites exhibited dynamic phenology, with significant interannual variability in the timing of seasonal patterns that propagated into interannual variability in measured hyperspectral reflectance. We used partial least-squares regression (PLSR) modeling to leverage the information contained within the entire canopy reflectance spectra (400-900 nm) in order to investigate questions regarding the connection between measured hyperspectral reflectance and landscape-scale fluxes of net ecosystem exchange (NEE) and gross primary productivity (GPP) across multiple timescales, from instantaneous flux to monthly integrated flux. With the PLSR models developed from this large data set we achieved a high level of predictability for both NEE and GPP flux in these two ecosystems, where the R2 of prediction with an independent validation data set ranged from 0.24 to 0.69. The PLSR models achieved the highest skill at predicting the integrated GPP flux for the week prior to the hyperspectral canopy reflectance collection, whereas the NEE flux often achieved the same high predictive power at daily to monthly integrated flux timescales. The high level of predictability achieved by PLSR in this study demonstrated the potential for using repeated hyperspectral canopy reflectance measurements to help partition NEE into its component fluxes, GPP and ecosystem respiration, and for using quasi-continuous hyperspectral reflectance measurements to model regional carbon flux in future analyses. © Author(s) 2015.

EndNote Format

You can import this reference in EndNote.

BibTeX-CSV Format

You can import this reference in BibTeX-CSV format.

BibTeX Format

You can copy the BibTeX entry of this reference below, orimport it directly in a software like JabRef .

@ARTICLE { MatthesKnoxSturtevantEtAl2015,
    AUTHOR = { Matthes, J.H. and Knox, S.H. and Sturtevant, C. and Sonnentag, O. and Verfaillie, J. and Baldocchi, D. },
    TITLE = { Predicting landscape-scale CO2 flux at a pasture and rice paddy with long-term hyperspectral canopy reflectance measurements },
    JOURNAL = { Biogeosciences },
    YEAR = { 2015 },
    VOLUME = { 12 },
    NUMBER = { 15 },
    PAGES = { 4577-4594 },
    NOTE = { cited By 3 },
    ABSTRACT = { Measurements of hyperspectral canopy reflectance provide a detailed snapshot of information regarding canopy biochemistry, structure and physiology. In this study, we collected 5 years of repeated canopy hyperspectral reflectance measurements for a total of over 100 site visits within the flux footprints of two eddy covariance towers at a pasture and rice paddy in northern California. The vegetation at both sites exhibited dynamic phenology, with significant interannual variability in the timing of seasonal patterns that propagated into interannual variability in measured hyperspectral reflectance. We used partial least-squares regression (PLSR) modeling to leverage the information contained within the entire canopy reflectance spectra (400-900 nm) in order to investigate questions regarding the connection between measured hyperspectral reflectance and landscape-scale fluxes of net ecosystem exchange (NEE) and gross primary productivity (GPP) across multiple timescales, from instantaneous flux to monthly integrated flux. With the PLSR models developed from this large data set we achieved a high level of predictability for both NEE and GPP flux in these two ecosystems, where the R2 of prediction with an independent validation data set ranged from 0.24 to 0.69. The PLSR models achieved the highest skill at predicting the integrated GPP flux for the week prior to the hyperspectral canopy reflectance collection, whereas the NEE flux often achieved the same high predictive power at daily to monthly integrated flux timescales. The high level of predictability achieved by PLSR in this study demonstrated the potential for using repeated hyperspectral canopy reflectance measurements to help partition NEE into its component fluxes, GPP and ecosystem respiration, and for using quasi-continuous hyperspectral reflectance measurements to model regional carbon flux in future analyses. © Author(s) 2015. },
    AFFILIATION = { Department of Geography, Dartmouth College, Fairchild, Hanover, NH, United States; Department of Environmental Science, Policy, and Management, University of California - Berkeley, Berkeley, CA, United States; Département de Géographie, Université de Montréal, Montréal, Canada },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.5194/bg-12-4577-2015 },
    SOURCE = { Scopus },
    URL = { https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938651890&doi=10.5194%2fbg-12-4577-2015&partnerID=40&md5=5af33154807af256eb58a9b732e00694 },
}

********************************************************** *************************** FRQNT ************************ **********************************************************

Un regroupement stratégique du

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - ABC CBA 2020 ****************** **********************************************************

31 mai au 4 juin 2020

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...