CoulibalyMigoletAdegbidiEtAl2008

Référence

Coulibaly, L., Migolet, P., Adegbidi, H.G., Fournier, R.A., Hervet, E. (2008) Mapping aboveground forest biomass from ikonos satellite image and multi-source geospatial data using neural networks and a kriging interpolation. In International Geoscience and Remote Sensing Symposium (IGARSS). (Scopus )

Résumé

The present study develops a method for aboveground forest biomass mapping from Ikonos imagery and geospatial data. Reference biomass values by group of species were estimated using Ker's equations and inventory data from permanent sample plots (PEP) of 400 m<sup>2</sup>. A supervised classification of the Ikonos image, based on the maximum likelihood method presenting the five species groups inventoried in the field study, was carried out. Thereafter, various vegetation indices and texture parameters were extracted from the Ikonos image. The extracted Ikonos data were then combined with geospatial data at the same 1 m spatial resolution. Inventory plots biomass values estimated by group of species were used for the neural networks model (Multi-layer Perceptrori) training with the backpropagation algorithm. Thereafter, biomass values for sample pixels generated randomly by group of species were predicted with the Multi-layer Perceptron. Then, sample pixels biomass values of each group were used to derive biomass values of other pixels of the same species group by interpolation with the ordinary kriging method using five different variogram models. The Gaussian variogram model yielded the best biomass estimates by comparison with reference biomass values, with percentages of residual errors ranging between 2,6 and 9,8% (absolute value) and percentages of RMSE (root mean square error) ranging between 17.2 and 61.1%. © 2008 IEEE.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@INPROCEEDINGS { CoulibalyMigoletAdegbidiEtAl2008,
    AUTHOR = { Coulibaly, L. and Migolet, P. and Adegbidi, H.G. and Fournier, R.A. and Hervet, E. },
    TITLE = { Mapping aboveground forest biomass from ikonos satellite image and multi-source geospatial data using neural networks and a kriging interpolation },
    BOOKTITLE = { International Geoscience and Remote Sensing Symposium (IGARSS) },
    YEAR = { 2008 },
    VOLUME = { 3 },
    NUMBER = { 1 },
    PAGES = { -- },
    ABSTRACT = { The present study develops a method for aboveground forest biomass mapping from Ikonos imagery and geospatial data. Reference biomass values by group of species were estimated using Ker's equations and inventory data from permanent sample plots (PEP) of 400 m<sup>2</sup>. A supervised classification of the Ikonos image, based on the maximum likelihood method presenting the five species groups inventoried in the field study, was carried out. Thereafter, various vegetation indices and texture parameters were extracted from the Ikonos image. The extracted Ikonos data were then combined with geospatial data at the same 1 m spatial resolution. Inventory plots biomass values estimated by group of species were used for the neural networks model (Multi-layer Perceptrori) training with the backpropagation algorithm. Thereafter, biomass values for sample pixels generated randomly by group of species were predicted with the Multi-layer Perceptron. Then, sample pixels biomass values of each group were used to derive biomass values of other pixels of the same species group by interpolation with the ordinary kriging method using five different variogram models. The Gaussian variogram model yielded the best biomass estimates by comparison with reference biomass values, with percentages of residual errors ranging between 2,6 and 9,8% (absolute value) and percentages of RMSE (root mean square error) ranging between 17.2 and 61.1%. © 2008 IEEE. },
    COMMENT = { Export Date: 10 February 2010 Source: Scopus Art. No.: 4779342 CODEN: IGRSE doi: 10.1109/IGARSS.2008.4779342 },
    ISSN = { 9781424428083 (ISBN) },
    KEYWORDS = { Aboveground forest biomass, Ikonos image, Neural networks, Ordinary kriging, Remote sensing, Aboveground forest biomass, Absolute values, Field studies, Forest biomass, Gaussian, Geo-spatial data, Ikonos data, Ikonos image, IKONOS imagery, IKONOS images, Ikonos satellite image, Inventory data, Kriging interpolation, Maximum likelihood methods, Multi layer perceptron, Multisource, Neural networks model, Ordinary kriging, Permanent sample plots, Residual error, Root mean square errors, Spatial resolution, Supervised classification, Variogram models, Vegetation index, Backpropagation algorithms, Block codes, Forestry, Image processing, Interpolation, Mapping, Maximum likelihood, Neural networks, Pixels, Range finding, Remote sensing, Vegetation, Biomass, Algorithms, Biomass, Forestry, Image Analysis, Mapping, Neural Networks, Plants, Remote Sensing },
    OWNER = { Luc },
    TIMESTAMP = { 2010.02.10 },
    URL = { http://www.scopus.com/inward/record.url?eid=2-s2.0-67649779090&partnerID=40&md5=fa66d27f6f9d8173a665dca949333657 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...