MeloSchneiderFortin2018

Référence

Melo, L.C., Schneider, R., Fortin, M. (2018) Estimating model- and sampling-related uncertainty in large-area growth predictions. Ecological Modelling, 390:62-69. (Scopus )

Résumé

Estimating uncertainty in forest growth predictions is essential to support large-area policies and decisions. The aim of this study was to estimate model and sampling uncertainties at a regional level. To do this, we generated forest growth predictions for three ecotypes in the Bas-Saint-Laurent region of Quebec, Canada. Predictions were generated using the ARTEMIS growth model that allows for stochasticity in some of the sub-models. We used a bootstrap hybrid estimator to estimate the variances arising from the model and the sampling. Moreover, the variance due to the model was further decomposed to determine which dynamic sub-model induced the greatest share of variance. Results revealed that sampling accounted for most of the variance in short-term predictions. In long-term predictions, the model contribution turned out to be as important as that of the sampling. The variance decomposition per sub-model indicated that the mortality sub-model induced the highest variability in the predictions. These results were consistent for the three ecotypes. We recommend that efforts in variance reduction focus on increasing the sample size in short-term predictions and on improving the mortality sub-model in long-term predictions. © 2018 Elsevier B.V.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { MeloSchneiderFortin2018,
    AUTHOR = { Melo, L.C. and Schneider, R. and Fortin, M. },
    TITLE = { Estimating model- and sampling-related uncertainty in large-area growth predictions },
    JOURNAL = { Ecological Modelling },
    YEAR = { 2018 },
    VOLUME = { 390 },
    PAGES = { 62-69 },
    NOTE = { cited By 2 },
    ABSTRACT = { Estimating uncertainty in forest growth predictions is essential to support large-area policies and decisions. The aim of this study was to estimate model and sampling uncertainties at a regional level. To do this, we generated forest growth predictions for three ecotypes in the Bas-Saint-Laurent region of Quebec, Canada. Predictions were generated using the ARTEMIS growth model that allows for stochasticity in some of the sub-models. We used a bootstrap hybrid estimator to estimate the variances arising from the model and the sampling. Moreover, the variance due to the model was further decomposed to determine which dynamic sub-model induced the greatest share of variance. Results revealed that sampling accounted for most of the variance in short-term predictions. In long-term predictions, the model contribution turned out to be as important as that of the sampling. The variance decomposition per sub-model indicated that the mortality sub-model induced the highest variability in the predictions. These results were consistent for the three ecotypes. We recommend that efforts in variance reduction focus on increasing the sample size in short-term predictions and on improving the mortality sub-model in long-term predictions. © 2018 Elsevier B.V. },
    AFFILIATION = { AgroParisTech/INRA/Université de Lorraine, UMR Silva, 14 rue Girardet, Nancy, 54042, France; Université du Québec à Rimouski - UQAR, Rimouski, Québec G5L 3A1, Canada },
    AUTHOR_KEYWORDS = { Hybrid inference; Monte Carlo techniques; Regional level; Stochastic models; Variance decomposition },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.1016/j.ecolmodel.2018.10.011 },
    SOURCE = { Scopus },
    URL = { https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055736758&doi=10.1016%2fj.ecolmodel.2018.10.011&partnerID=40&md5=9222d3338aa0147fc4e629de00ffc98a },
}

********************************************************** *************************** FRQNT ************************ **********************************************************

Un regroupement stratégique du

********************************************************** *********************** Infolettre *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Congrès Mycelium ****************** **********************************************************

Reporté en 2021

********************************************************** ***************** Pub - IWTT ****************** **********************************************************

Reporté en 2021

**********************************************************

***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...