SolymosMatsuokaCummingEtAl2018

Référence

Sólymos, P., Matsuoka, S.M., Cumming, S.G., Stralberg, D., Fontaine, P., Schmiegelow, F.K.A., Song, S.J., Bayne, E.M. (2018) Evaluating time-removal models for estimating availability of boreal birds during point count surveys: Sample size requirements and model complexity. Condor, 120(4):765-786. (Scopus )

Résumé

We used conventional and finite mixture removal models with and without time-varying covariates to evaluate availability given presence for 152 bird species using data from point counts in boreal North America. We found that the choice of model had an impact on the estimability of unknown model parameters and affected the bias and variance of corrected counts. Finite mixture models provided better fit than conventional removal models and better adjusted for count duration. However, reliably estimating parameters and minimizing variance using mixture models required at least 200-1,000 detections. Mixture models with time-varying proportions of infrequent singers were best supported across species, indicating that accounting for date-and time-related heterogeneity is important when combining data across studies over large spatial scales, multiple sampling time frames, or variable survey protocols. Our flexible and continuous time-removal modeling framework can be used to account for such heterogeneity through the incorporation of easily obtainable covariates, such as methods, date, time, and location. Accounting for availability bias in bird surveys allows for better integration of disparate studies at large spatial scales and better adjustment of local, regional, and continental population size estimates. © 2018 American Ornithological Society.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { SolymosMatsuokaCummingEtAl2018,
    AUTHOR = { Sólymos, P. and Matsuoka, S.M. and Cumming, S.G. and Stralberg, D. and Fontaine, P. and Schmiegelow, F.K.A. and Song, S.J. and Bayne, E.M. },
    TITLE = { Evaluating time-removal models for estimating availability of boreal birds during point count surveys: Sample size requirements and model complexity },
    JOURNAL = { Condor },
    YEAR = { 2018 },
    VOLUME = { 120 },
    NUMBER = { 4 },
    PAGES = { 765-786 },
    NOTE = { cited By 0 },
    ABSTRACT = { We used conventional and finite mixture removal models with and without time-varying covariates to evaluate availability given presence for 152 bird species using data from point counts in boreal North America. We found that the choice of model had an impact on the estimability of unknown model parameters and affected the bias and variance of corrected counts. Finite mixture models provided better fit than conventional removal models and better adjusted for count duration. However, reliably estimating parameters and minimizing variance using mixture models required at least 200-1,000 detections. Mixture models with time-varying proportions of infrequent singers were best supported across species, indicating that accounting for date-and time-related heterogeneity is important when combining data across studies over large spatial scales, multiple sampling time frames, or variable survey protocols. Our flexible and continuous time-removal modeling framework can be used to account for such heterogeneity through the incorporation of easily obtainable covariates, such as methods, date, time, and location. Accounting for availability bias in bird surveys allows for better integration of disparate studies at large spatial scales and better adjustment of local, regional, and continental population size estimates. © 2018 American Ornithological Society. },
    AFFILIATION = { University of Alberta, Department of Biological Sciences, Edmonton, AB, Canada; U.S. Geological Survey, Alaska Science Center, Anchorage, AL, United States; Boreal Avian Modelling Project, University of Alberta, Edmonton, AB, Canada; Université Laval, Département des Sciences du Bois et de la Forêt, Québec City, QC, Canada; Northern Environmental and Conservation Sciences Program, Department of Renewable Resources, University of Alberta, C/o Yukon College, Whitehorse, Yukon, Canada; Environment and Climate Change Canada, Canadian Wildlife Service, Edmonton, AB, Canada },
    AUTHOR_KEYWORDS = { abundance; bias-variance tradeoff; boreal birds; detectability; population size },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.1650/CONDOR-18-32.1 },
    SOURCE = { Scopus },
    URL = { https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052646848&doi=10.1650%2fCONDOR-18-32.1&partnerID=40&md5=d7044538625109a6d85d73764d7d82fb },
}

********************************************************** *************************** FRQNT ************************ **********************************************************

Un regroupement stratégique du

********************************************************** *********************** Infolettre *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Congrès Mycelium ****************** **********************************************************

Reporté en 2021

********************************************************** ***************** Pub - IWTT ****************** **********************************************************

Reporté en 2021

**********************************************************

***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...