WorkBuddleKorinusEtAl2002

Référence

Work, T.T., Buddle, C.M., Korinus, L.M., Spence, J.R. (2002) Pitfall trap size and capture of three taxa of litter-dwelling arthropods: Implications for biodiversity studies. Environmental Entomology, 31(3):438-448.

Résumé

Cost-effective and ecologically sensitive monitoring techniques are required to assess effects of anthropogenic disturbances on biodiversity. Pitfall trapping is widely used in biodiversity monitoring programs to measure the diversity of organisms active within leaf-litter. We compared catch rates and species richness of ground beetles (Coleoptera: Carabidae), rove beetles (Coleoptera: Staphylinidae), and spiders (Araneae) across five different diameters of pitfall traps (4.5, 6.5, 11, 15, and 20 cm) and three sizes of rain covers (64, 79.2, and 225 cm2) to determine optimal trap size for studying litter-dwelling arthropod biodiversity. In general, larger pitfall traps collected more individuals, and more species, of all three taxa. Further tests on data standardized to trap circumference showed that catch rates are not directly proportional to trap size, and even the smallest traps collected a disproportionately high number of certain taxa. When catch rate data were standardized by trap circumference smaller traps collected more small-bodied carabid and staphylinid species and large traps collected more wolf spiders (Lycosidae) than smaller traps. Roof size had no effect on species richness or catch rate of beetles or spiders. For the purposes of ecological monitoring, using more small pitfall traps would be the most efficient sampling technique to characterize the dominant epigaeic arthropod fauna; small traps collect few nontarget vertebrates, and sorting the samples involves generally less processing time. From a conservation perspective, however, including several large pitfall traps in the sampling regime would help detect rare species.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { WorkBuddleKorinusEtAl2002,
    AUTHOR = { Work, T.T. and Buddle, C.M. and Korinus, L.M. and Spence, J.R. },
    TITLE = { Pitfall trap size and capture of three taxa of litter-dwelling arthropods: Implications for biodiversity studies },
    JOURNAL = { Environmental Entomology },
    YEAR = { 2002 },
    VOLUME = { 31 },
    PAGES = { 438-448 },
    NUMBER = { 3 },
    NOTE = { 0046225X (ISSN) Cited By (since 1996): 20 Export Date: 25 April 2007 Source: Scopus CODEN: EVETB Language of Original Document: English Correspondence Address: Work, T.T.; Department of Biological Sciences; University of Alberta; CW-405 Biological Sciences Building Edmonton, Alta. T6G 2E9, Canada; email: twork@ualberta.ca References: Adis, J., Problems interpreting arthropod sampling with pitfall traps (1979) Zool. Anz., 202, pp. 177-184; Baars, M.A., Catches in pitfall traps in relation to mean densities of carabid beetles (1979) Oecologia, 41, pp. 25-46; Bostanian, N.J., Boivin, G., Goulet, H., Ramp pitfall traps (1983) J. Econ. Entomol., 76, pp. 1473-1475; Brennan, K.E.C., Majer, J.D., Reygaert, N., Determination of an optimal pitfall trap size for sampling spiders in a Western Australian Jarrah forest (1999) J. Insect Conserv., 3, pp. 297-307; Buddle, C.M., Spence, J.R., Langor, D.W., Succession of boreal forest spider assemblages following wildfire and harvesting (2000) Ecography, 23, pp. 424-436; Colwell, R.K., (1997) EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples, Version 5, , http://viceroy.eeb.uconn.edu/estimates, User's guide and application published; Curtis, D.J., Pitfalls in spider community studies (Arachnida, Araneae) (1980) J. Arachnol., 8, pp. 271-280; Digweed, S.C., Currie, C.R., Carcamo, H.A., Spence, J.R., Digging out the "digging-in effect" of pitfall traps: Influences of depletion and disturbance on catches of ground beetles (1995) Pedobiolog., 39, pp. 561-576; Dondale, C.D., Redner, J.H., (1990) The Wolf Spiders, Nursery Web Spiders, and Lynx Spiders of Canada and Alaska, , Biosystematics Res. Centre, Ottawa; Dourojeanni, M.J., Entomology and biodiversity conservation in Latin America (1990) Am. Entomol., 36, pp. 88-92; Eyre, M.D., Luff, M.L., Rushton, S.P., Topping, C.J., Ground beetles and weevils (Carabidae and Curculionoidea) as indicators of grassland management practices (1989) J. Appl. Entomol., 107, pp. 508-517; Feinsinger, P., Coevolution and pollination (1983) Coevolution, , D. J. Futuyma and M. Slatkin (eds.). Sinauer, Sunderland, MA; Greenslade, P.J.M., Pitfall trapping as a method for studying populations of Carabidae (Coleoptera) (1964) J. Anim. Ecol., 33, pp. 301-310; Halsall, N.B., Wratten, S.D., The efficiency of pitfall trapping for polyphagous predatory Carabidae (1988) Ecol. Entomol., 13, pp. 293-299; Hammond, H.E.J., Arthropod biodiversity from Populus coarse woody material in north-central Alberta: A review of taxa and collection methods (1997) Can. Entomol., 129, pp. 1009-1033; Hallander, H., Range and movements of the wolf spiders Pardosa chelata (O.F. Mu?ller) and P. pullata (Clerck) (1967) Oikos., 18, pp. 360-364; Hewlett, R., Implications of taxonomic resolution and sample habitat for stream classification at a abroad geographic scale (2000) J. N. Am. Benthol. Soc., 19, pp. 352-361; Huhta, V., Succession in the spider communities of the forest floor after clear-cutting and prescribed burning (1971) Ann. Zool. Fenn., 8, pp. 483-542; Kaston, B.J., Spiders of Connecticut (1948) State Geological and Natural History Survey. Bulletin, 70, pp. 1-874; Kremen, C., Colwell, R.K., Erwin, T.L., Murphy, D.D., Noss, R.F., Sanjayan, M.A., Terrestrial arthropod assemblages: Their use in conservation planning (1993) Conserv. Biol., 7, pp. 796-808; Lemieux, J.P., Lindgren, B.S., A pitfall trap for large-scale trapping of Carabidae: Comparison against conventional design, using two different preservatives (1999) Pedobiolog., 43, pp. 245-253; Lindroth, C.H., The ground-beetles of Canada and Alaska (1969) Opuscula Entomologica Supplenta., 20-35, pp. 1-1192; Luff, M.L., Some features influencing the efficiency of pitfall traps (1975) Oecol., 19, pp. 345-357; Madden, K.E., Fox, B.J., Arthropods as indicators of the effects of flouride pollution on the succession following sand mining (1997) J. Appl. Ecol., 34, pp. 1239-1256; Majer, J.D., Ants: Bio-indicators of minesite rehabilitation, land-use, and land conservation (1983) Environ. Manage., 7, pp. 375-383; Mattson, W.J., Addy, N.D., Phytophagous insects as regulators of forest primary production (1975) Science, 190, pp. 515-522; McIver, J.D., Parsons, G.L., Moldenke, A.R., Litter spider succession after clear-cutting in a western coniferous forest (1992) Can. J. For. Res., 22, pp. 984-992; Niemela?, J., Halme, E., Pajunen, T., Haila, Y., Sampling spiders and carabid beetles with pitfall traps: The effect of increased sampling effort (1986) Ann. Entomol. Fenn., 52, pp. 109-111; Niemela?, J., Spence, J.R., Distribution and abundance of an exotic ground-beetle (Carabidae): A test of community impact (1991) Oikos., 62, pp. 351-359; Niemela?, J., Spence, J.R., Spence, D.H., Habitat associations and seasonal activity of ground-beetles (Coleoptera, Carabidae) in Central Alberta (1992) Can. Entomol., 124, pp. 521-540; Niemela?, J., Langor, D., Spence, J.R., Effects of clear-cut harvesting on boreal ground-beetle assemblages (Coleoptera: Carabidae) in Western Canada (1993) Conserv. Biol., 7, pp. 551-561; Niemela?, J., Haila, Y., Punttila, P., The importance of small-scale heterogeneity in boreal forests: Variation in diversity in forest-floor invertebrates across the succession gradient (1996) Ecography, 19, pp. 352-368; Pajunen, T., Haila, Y., Halme, E., Niemela?, J., Punttila, P., Ground-dwelling spiders (Arachnida, Araneae) in fragmented old forests and surrounding managed forests in southern Finland (1995) Ecography, 18, pp. 62-72; Parmesan, C., Climate and species' ranges (1996) Science, 382, pp. 765-766; Pettersson, R.B., Ball, J.P., Renhorn, K.-E., Esseen, P.-A., Sjo?berg, K., Invertebrate communities in boreal forest canopies as influenced by forestry and lichens with implications for passerine birds (1995) Biol. Conserv., 74, pp. 57-63; Raworth, D.A., Choi, M.-Y., Determining numbers of active carabid beetles per unit area from pitfall-trap data (2001) Entomol. Exp. Appl., 98, pp. 95-108; Schowalter, T.D., Zhang, Y.L., Sabin, T.E., Decomposition and nutrient dynamics of oak Quercus spp. logs after five years of decomposition (1998) Ecography, 21, pp. 3-10; Seastedt, T.R., The role of microarthropods in decomposition and mineralization processes (1984) Annu. Rev. Entomol., 29, pp. 25-46; Smetana, A., (1995) Rove Beetles of the Subtribe Philonthina of America North of Mexico (Coleoptera: Staphylinidae). Classification, Phylogeny, and Taxonomic Revision, , Associated Publishers, Gainesville, FL; Sokal, R.R., Rohlf, F.J., (1995) Biometry: The Principles and Practice of Statistics in Biological Research, , Freeman, New York; Southwood, T.R.E., (1994) Ecological Methods: With Particular Reference to the Study of Insect Populations, , Chapman \& Hall, London; Spence, J.R., Niemela?, J.K., Sampling carabid assemblages with pitfall traps: The madness and the method (1994) Can. Entomol., 126, pp. 881-894; Spence, J.R., Langor, D.W., Niemela?, J., Ca?rcamo, H.A., Currie, C.R., Northern forestry and carabids: The case for concern about old-growth species (1996) Ann. Zool. Fenn., 33, pp. 173-184; (1999) User's Manual. SPSS for Windows, Version 10.0.5, , SPSS, Chicago, IL; Thiele, H.-U., (1977) Carabid Beetles in Their Environment: A Study on Habitat Selection by Adaptations in Physiology and Behavior, , Springer, Berlin; Topping, C.J., Behavioural responses of three linyphiid spiders to pitfall traps (1993) Entomol. Exp. Appl., 68, pp. 287-293; Topping, C.J., Sutherland, K.D., Limitations of the use of pitfall traps in ecological studies exemplified by a study of spiders in a field of winter wheat (1992) J. Appl. Ecol., 29, pp. 485-491; Uetz, G.W., Unzicker, J.D., Pitfall trapping in ecological studies of wandering spiders (1976) J. Arachnol., 3, pp. 101-111; Wallin, H., Ekbom, B., Influence of hunger level and prey densities on movement patterns in 3 species of Pterostichus beetles (Coleoptera, Carabidae) (1994) Env. Entomol., 23, pp. 1171-1181; Wilson, E.O., (1992) The Diversity of Life, , W.W. Norton, New York; Work, T.T., McCullough, D.G., Lepidopteran communities in two forest ecosystems during the first gypsy moth outbreaks in northern Michigan (2000) Environ. Entomol., 29, pp. 884-900. },
    ABSTRACT = { Cost-effective and ecologically sensitive monitoring techniques are required to assess effects of anthropogenic disturbances on biodiversity. Pitfall trapping is widely used in biodiversity monitoring programs to measure the diversity of organisms active within leaf-litter. We compared catch rates and species richness of ground beetles (Coleoptera: Carabidae), rove beetles (Coleoptera: Staphylinidae), and spiders (Araneae) across five different diameters of pitfall traps (4.5, 6.5, 11, 15, and 20 cm) and three sizes of rain covers (64, 79.2, and 225 cm2) to determine optimal trap size for studying litter-dwelling arthropod biodiversity. In general, larger pitfall traps collected more individuals, and more species, of all three taxa. Further tests on data standardized to trap circumference showed that catch rates are not directly proportional to trap size, and even the smallest traps collected a disproportionately high number of certain taxa. When catch rate data were standardized by trap circumference smaller traps collected more small-bodied carabid and staphylinid species and large traps collected more wolf spiders (Lycosidae) than smaller traps. Roof size had no effect on species richness or catch rate of beetles or spiders. For the purposes of ecological monitoring, using more small pitfall traps would be the most efficient sampling technique to characterize the dominant epigaeic arthropod fauna; small traps collect few nontarget vertebrates, and sorting the samples involves generally less processing time. From a conservation perspective, however, including several large pitfall traps in the sampling regime would help detect rare species. },
    KEYWORDS = { Araneae Biodiversity Carabidae Pitfall trap size Sampling Staphylindae arthropod biodiversity leaf litter monitoring system pitfall trap sampling species richness Araneae Arthropoda Carabidae Coleoptera Lycosidae Staphylinidae },
    OWNER = { brugerolles },
    TIMESTAMP = { 2007.12.05 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...