Insectivorous birds as indicators of future defoliation by the spruce budworm

M. Germain^{1,2}, M.-A. Villard¹, L. De Granpré³, P. M. A. James⁴, D. Kneeshaw², U. Vepakomma⁵, J.-F. Poulin⁶

¹Département de Biologie, Université du Québec à Rimouski, Rimouski, Canada^{; 2}Centre d'Étude de la Forêt, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada; ³Service Canada; ³Service Canadien des Forêts, Centre de Foresterie des Laurentides, Québec, Canada; ⁴Département des Sciences Biologiques, Université de Montréal, Montréal, Canada; ⁵FPInnovations, Pointe-Claire, Canada; ⁶WSP, Baie-Comeau, Canada

Context

- A new Spruce budworm (SBW) has rapidly expanded from 2006, especially in the North Shore area.
- The outbreak is now at New Brunswick's doorstep.
- It could cause 4 to 7 billion dollars in wood fibre losses over 40 years.
- A new forest protection strategy based on early intervention has had promising results but depends on our ability to identify regions that are likely to be defoliated while SBW are low.
- However, current methods of early detection are so far relatively inefficient.

Annual defoliation in 2010: **765 740 ha defoliated**

Annual defoliation in 2016: **7 018 287 ha defoliated**

Goal of the project

Development of an analytical tool to predict the probability of conifer defoliation by SB using bird species known to respond to increases in SBW populations.

- → Use changes in birds density to develop models to better identify stands at risk of defoliation and the time lag between changes in birds densities and defoliation.
 - \rightarrow Development of a predictive management model to guide early intervention.

Bird species foraging on SBW

Tennessee warbler (Leiothlypis peregrina)

Bay-breasted warbler (Setophaga castanea)

Cape May warbler (Setophaga tigrina)

Evening grosbeak (Coccothraustes vespertinus)

Numerical response to the SBW outbreak with increases in density up to tenfold over 4 or 5 years.

→ Budworm warblers, and possibly the Evening grosbeak may help us identify incipient outbreak patches even before defoliation is visible from aerial inventories or hyperspectral remote sensing imagery.

\rightarrow Enormous opportunity to use natural trophic dynamics to guide early intervention management strategies.

The approach

• Exploration of the relationships between changes in bird densities and SWB density controlling for forest spatial characteristics at a local and regional scale.

 \rightarrow Modelling using GLMM and model selection procedures using AIC: how do bird densities explain defoliation patterns?

- → Identification of the time lag between birds density changes and subsequent or past defoliation.
- Development of a predictive model based on birds dynamics to identify the stands with higher defoliation risk.

