

APPORTS D'UN INOCULUM MYCORHIZIEN DANS LE CADRE D'UNE FILIÈRE DE PHYTOMANAGEMENT DES SOLS CONTAMINÉS PAR DES ÉLÉMENTS TRACE MÉTALLIQUES

Under the supervision of LOUNES-HADJ SAHRAOUI Anissa & FONTAINE

10/30/2019

Phytomanagement of contaminated areas

Aided phytostabilization channel at field scale

Valorization of the biomass produced on polluted soils (essential oil production)

- Exploration of more important soil volume by the AMF
- Better water and mineral nutritions for the plant
- Better plant growth and stress tolerance
- Contribution to pollutant stabilization

Chosen aromatic and medicinal plant species

Angelica (Angelica archangelica)

Clary Sage (Salvia sclarea)

Coriander (Coriandrum sativum)

Selection criteria

Plant vegetation and growing cycle (annual / bisannual) – plant acclimatization – agricultural practices – harvested parts

Phytostabilization potential

Commercial potential in a non-food valorization channel (Seed prices and availability – EO selling price – market opportunities)

Project objectives

Valorization channel => non-food perspective - vegetable biomass produced on agricultural contaminated soils - combination of aided phytostabilization (aromatic plants) and essential oil production

In situ experimental site : Metaleurop

Two experimental plots of 2 hectares :

Non-contaminated plot

• MTE contamination

TE-Contaminated plot

Pre-sowing sampling – Initial state

Soil texture	Sandy clay loam
Cation-exchange capacity (me/kg)	100 - 200
рН	7,7 - 8
Organic matter (g/kg)	28 - 32,9
C/N ratio	7,3 - 10,7
CaCO3 total content (%)	0,3 - 0,9
Assimilable phosphorus (g/kg)	0,14 - 1
Exchangeable Potassium (g/kg)	0,26 - 0,27
Exchangeable Magnésium (g/kg)	0,13 - 0,31
Exchangeable Calcium (g/kg)	2,5 - 6,3
Exchangeable Sodium (g/kg)	0,02 - 0,03

_	
	High
	Decent
	Average
	Low
	Very low

6th April 2017 on both experimental plots

- Characterisation of :
 - Physico-chemical parameters
 - Initial TE contamination assessment
 Tracking of 9 MTE
 - Cd 7,2 ppm Pb 394 ppm Zn 443 ppm
 Up to 10/15 times higher
 - Interpretation based on reference values given for a field crop scenario (Maize – Wheat)

In situ experimental design

2017 and 2018

Non-contaminated plot

Angelica Coriander Sage

Contaminated plot

Not amended - control Amended with a biological inoculum (mycorrhizal fungi)

Aromatic plants - sowing and growth monitoring

- Mycorrhizal inoculum
- AGTIV specialised crops, Premier Tech agriculture) – seed coating
- Inoculum decision criterion => tracking (molecular

biology)

	Year	Plot	Amendment	Emergence rat	e (mean)
	Non-contaminated (Rod) age 2017 Contaminated (Evin)	Not amended	45±6	b	
Sage		Amended	45 ± 10	ab	
		Not amended	71 ± 9	a	
		Contaminated (EVIN)	Amended	65 ± 8	a

- Good emergence rates higher ones on the contaminated plot
- No positive impact of the inoculation on measured ermergence rates

- MTE analysis (soil & plant)
- **Biomass characterisation** (dry weight – height)
- Plant colonisation by AMF \Rightarrow
- Inoculum tracking (soil and roots) soil microbial communities monitoring

Mean height and dry weight of sage

- No positive effect of the inoculation on sage's biomass

Statistical analysis : multiple comparison, Anova 1F with Bonferroni correction

- Good plant growth

<u>от пореда</u>

Sage mycorhizal rates

2017

 No effect of soil contamination by MTE on sage mycorhization

- Significant effect of the inoculation on both plots

Statistical analysis : multiple comparison, Anova 1F with Bonferroni correction

Essential oil production - sage

		Non-contaminated (Rod)		Contaminated (Evin)	
		Non inoculated	Inoculated	Non inoculated	Inoculated
Co.co. 2019	Distillation yield (%)	0,022	0,020	0,036	0,021
Sage 2018	Essential oil amount (kg/ha)	12,9	20,3	33,7	24,2

- High yields on the second year of cultivation, satisfactory in comparison with reference yields obtained for a traditionnal sage cultivation (CRIEPPAM ITEIPMAI)
 - \Rightarrow Significant amount of biomass with mature flowered parts
 - \Rightarrow Appropriate date and harvesting method

Metal Trace Elements monitoring

MTE mobility - transfer in aerial parts ?

- Significantly higher amounts of lead and zinc in comparison with the noncontaminated plot
- Reduction of lead mobility on the sage inoculated plot
- Significantly smaller amounts measured for the MTE detected in the biomass sampled on the inoculated plots

- Essential oils :
 - **No** MTE in essential oils

- Distillation residues :
 - Higher concentrations than in aerial parts

12

□ The efficiency of the phytostabilization channel is in process – MTE immobilization

EO chemical composition analysis (in %) – sage 2018

13

Antifungal assay

- Phytopathogenic fungi : Fusarium culmorum & Zymoseptoria tritici
- Antifungal effect investigated by direct contact or volatility assays (Chutia et al., 2009; Huang et al., 2010)
 - Concentrations ranging from 0,005 to 0,5% in the culture medium (PDA) or in liquid broth
- \Rightarrow Determination of an inhibition zone
- ⇒ IC₅₀ value determination (graphical interpolation complemented with a statistical method Sahmer *et al.,* 2014)

	IC ₅₀ (g.L ⁻¹)		
e 2018	Non-contaminated plot, non inoculated	2.08 ^a	
	Non-contaminated plot, inoculated		
Sage	Contaminated plot, non inoculated	1.47 ^a	
	Contaminated plot, inoculated Multiple comparison – ANOVA 1F	1.54 ^a	

- Fungistatic effect demonstrated
- No significant difference in terms of IC₅₀
- Obtained IC₅₀ are significantly higher than those commonly listed for other EO or chemicals (Ben Ghnaya *et al.,* 2016 ; Li *et al.,* 2017 ; Matusinski *et al.,* 2015 ; Terzi *et al.,* 2007)

Herbicidal assay

- EO's effect evaluated on two plant species : Lactuca sativa and Lolium perenne
- Herbicidal effect evaluated by direct contact, under controlled conditions
 - Day/night cycle (16h 20°C / 8h 16°C)
 - Non complemented agar medium
- \Rightarrow Determination of the inhibition of :
 - Germination rate
 - Root elongation

 \Rightarrow Estimation of IC₅₀ values (graphical interpolation and statistical method – Sahmer *et al.*, 2014)

	IC ₅₀ (g.L ⁻¹) R	ye-grass	Lettuce
8	Non-contaminated plot, non inoculated	0.77 ^a	1.16 ^a
e 201	Non-contaminated plot, inoculated	0.66 ^a	1.17 ^a
Sag	Contaminated plot, non inoculated	0.50 ^a	0.54 ^a
	Contaminated plot, inoculated	0.34 ^a	0.82 ^a

- Herbicidal effect demonstrated
- No significant difference in terms of IC₅₀
- **References :** Judd *et al.*, 2015; Lyu *et al.*, 2018; Paul *et al.*, 2001 ; Yazdanbakhsh and Fisahn, 2010

15

Conclusions

Plant development	 Very good development on contaminated soils Satisfactory biomass yields & EO amounts 	 Market potential for the EO, considering their biological properties and
Inoculation benefits	 Improvement of the root colonisation by AMF Reduction of the MTE mobility & transfer 	 MTE absence Valorization opportunity in a phytomanagement
EO composition and properties	 Faithful chemical composition =>Linalyl acetate, germacrene and linalool Fungistatic & herbicidal effects demonstrated 	approach
EO quality	 No essential oil contamination by MTE 	

Perspectives

- Carry out studies, to evaluate :
 - The social acceptability of the channel
 - The techno-economical feasibility

- Investigate other biological properties :
 - Antifungal (against other phytopathogenic fungi), insecticidal, anti-oxydative and anti-inflammatory properties
 - Carry out *in planta* antifungal assays

 Consider the future valorization of distillation residues - identify and set up the potential recovery methods (anaerobic digestion, combustion, composting)

Thank you for your attention

UCEIV

Anissa LOUNES-HADJ SAHRAOUI, Joël FONTAINE, Anthony VERDIN, Sophie FOURMENTIN

Partners Valérie BERT, Hervé FLANQUART, Patrice FERRANT

Funders

PÔLE MÉTROPOLITAIN DE LA CÔTE D'OPALE

*Contact : Robin Raveau robin.raveau@univ-littoral.fr

Project Website: https://phyteo.univ-littoral.fr

18