

Colonisation racinaire de la pomme de terre par les mycorhizes et la diversité de la communauté mycorhizienne affectée par l'azote

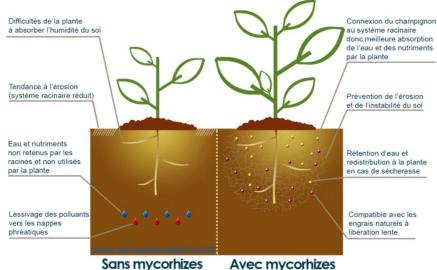
<u>Vicky Lévesque</u>, Mario Laterrière, Chantal Hamel, Athyna N. Cambouris, Jean Lafond, Noura Ziadi Agriculture et Agroalimentaire Canada

MYCORHIZES 2019

L'essor de la nouvelle révolution verte **30 octobre 2019**

Organisé par

CMA


Introduction
Hypothèses
Objectifs
Méthodologie
Résultats
Conclusion

Champignons mycorhiziens à arbuscule (CMA) travaillant en symbiose avec les racines des plantes-hôtes

✓ Améliore l'état nutritionnel (N et P) de la plante-hôte

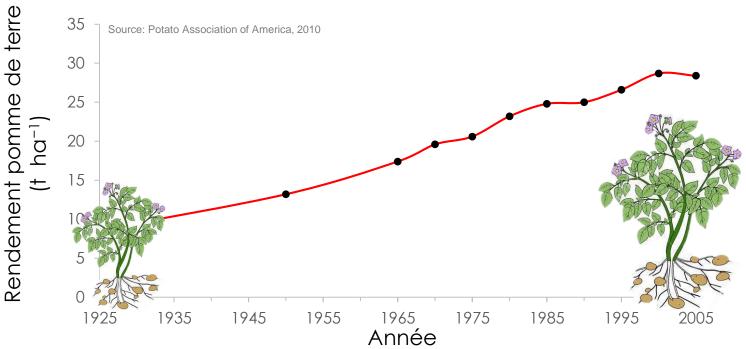
- ✓ Meilleure résistance aux stress:
 - Biotiques (ex.: pathogènes)
 - Abiotique (ex.: sécheresse, & salinité)

Meilleure croissance de la plante-hôte

Pomme de terre

Introduction
Hypothèses
Objectifs
Méthodologie
Résultats
Conclusion

✓ Symbiose bénéfique avec les mycorhizes


Source: Fortin, 2016. https://www.fsaa.ulaval.ca/fileadmin/FSAA Fichiers/Faculte/Conferences/DinersBotaniques/H16/les mycorhizes atout pour I agriculture.pdf

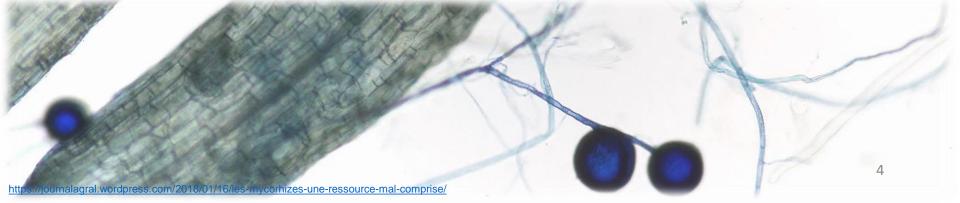
Pomme de terre

Introduction
Hypothèses
Objectifs
Méthodologie
Résultats

✓ Pratiques agricoles ont évoluées sans ce soucier des effets bénéfiques des mycorhizes dans le sol

Réponse à l'augmentation de la fertilisation en P

- ✓ Sols de la culture de la pomme de terre sont très riche en P
 - Défavorable au développement des CMA


Hypothèses

Introduction
Hypothèses
Objectifs
Méthodologie
Résultats
Conclusion

Fertilisation riche en N:

- Augmente la croissance de la pomme de terre et sa demande en P;
- Favorise la colonisation mycorhizienne de la pomme de terre;
- Influence la diversité de la communauté mycorhizienne du sol, mais dépend du précédent cultural de la pomme de terre.

Objectifs

Évaluer l'effet d'une fertilisation riche en Naprès divers précédents culturaux:

- ✓ Accroître la production de la pomme de terre;
- ✓ Augmenter la demande en P de la plante;
- ✓ Augmenter le taux de colonisation mycorhizienne de la pomme de terre;
- ✓ Cibler les espèces mycorhiziennes tolérantes à la fertilisation du sol.

Introduction Hypothèses Objectifs Méthodologie Résultats Conclusion

Site #1

- \triangleright Pauvre en P (< 50 kg P_2O_5 ha⁻¹)
 - Péribonka
 - Loam sableux (Humo-Ferric Podzol)
 - Pomme de terre: Goldrush

Précédents culturaux


- √ 2016: Canola, Avoine & Raygrass
- √2018: Pois, Avoine & Raygrass

Site #2

- \triangleright Riche en P (> 500 kg P_2O_5 ha⁻¹)
 - Sainte-Catherine-de-la-Jacques-Cartier (Québec)
 - Loam limoneux (Humo-Ferric Podzol)
 - Pomme de terre: Russet Burbank

Précédents culturaux

√ 2016 & 2018: Maïs, Avoine & Millet Perlé fourrager (MPF)

Dispositif expérimental

- √ Split-plot
- ✓ Nb traitements / site / an:
 - 6 Traitements = 3 Précédents culturaux x 2 Doses de fertilisation N
- √ 4 répétitions

Fertilisation N

- ✓ **0 N** = 0 kg N ha⁻¹
- √ 180 N = 180 kg N ha⁻¹ (≥ dose optimale) => Application fractionnée:
 - Plantation: 60 kg N ha⁻¹ sulfate d'ammonium en bande (21-0-0)
 - Avant le buttage: 120 kg N ha⁻¹ nitrate d'ammonium calcique (27-0-0)

* Tous les traitements : P / K / S application en bande selon les recommandations agronomiques (CRAAQ, 2010)

Méthodologie

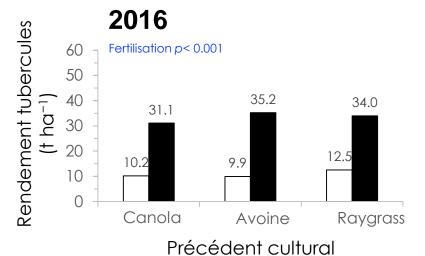
Analyses

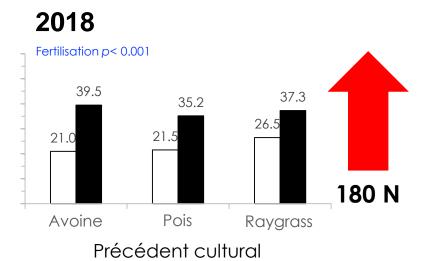
- √ Rendement des tubercules (t ha⁻¹): Fin de culture 2016 & 2018;
- √ Concentration NO₃⁻ et PO₄³⁻ pétioles (g kg ⁻¹)
- √ Taux de colonisation mycohrizienne (%)
- √ Communauté mycorhizienne du sol (extrait ADN génomique)

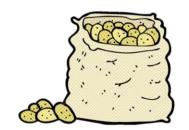
Stade début floraison

Rendements

Introduction
Hypothèses
Objectifs
Méthodologie
Résultats
Conclusion



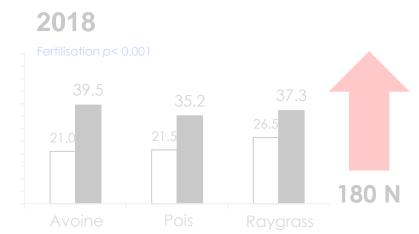

Rendements

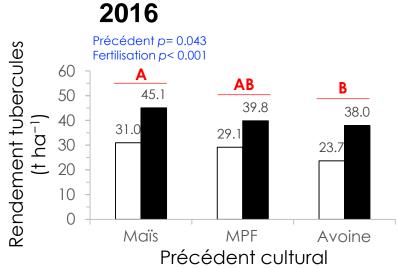


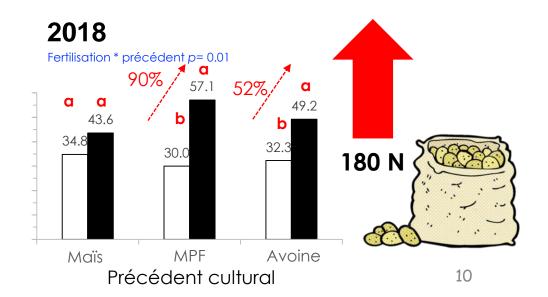
Introduction
Hypothèses
Objectifs
Méthodologie
Résultats
Conclusion

Site #1: Pauvre en P

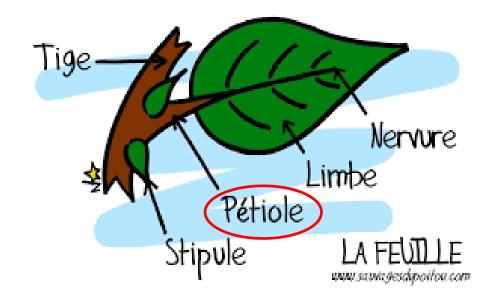



Rendements


Introduction
Hypothèses
Objectifs
Méthodologie
Résultats
Conclusion

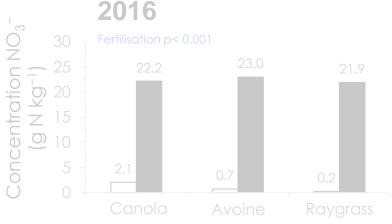

Site #1: Pauvre en P

Site #2: Riche en P



Analyse statistique: Test de Tukey (p< 0.05)

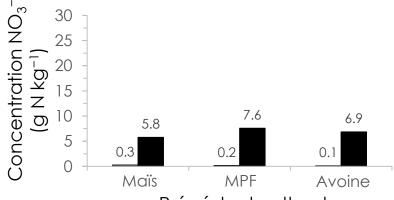
Concentration N_{pétiole} et P_{pétiole}



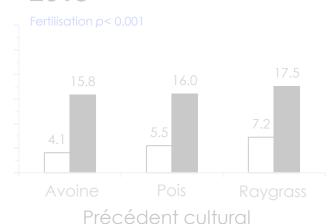
- Maximiser les rendements de la pomme de terre <u>Avantages</u>:
 - ✓ Non destructif
 - ✓ N'affecte pas les rendements

Concentration $N_{pétiole}$

Introduction Conclusion



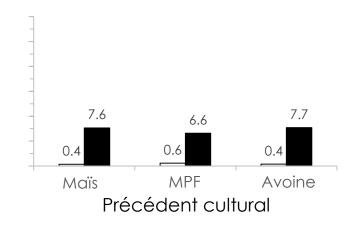
Précédent cultural

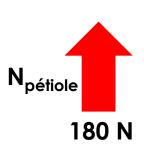

Site #2: Riche en P 2016

Fertilisation p < 0.001

Précédent cultural

2018

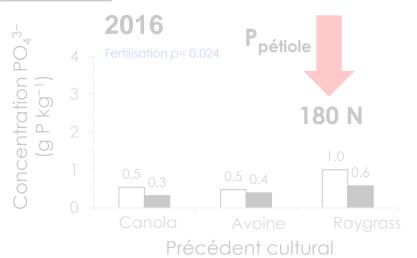

0 N


Npétiole 180 N

180 N

2018

Fertilisation p < 0.001



Concentration $P_{p\text{\'etiole}}$

Introduction
Hypothèses
Objectifs
Méthodologie
Résultats
Conclusion

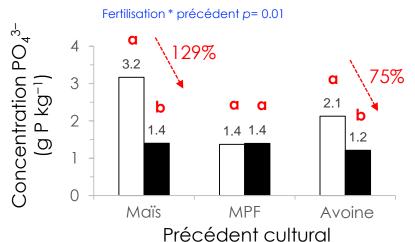
Site #1: Pauvre en P

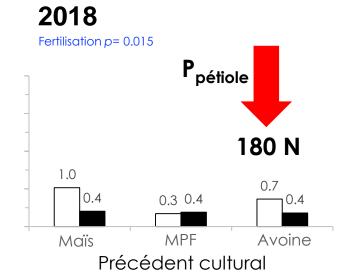
180 N => Pas d'effet

1.0 1.2 0.9 0.8 0.8 1.1

Avoine Pois Raygrass

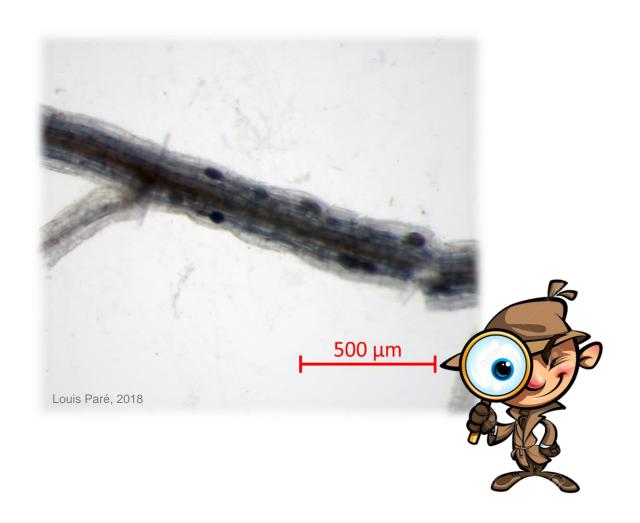
Précédent cultural


0 N

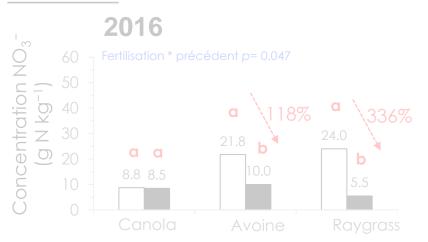

2018

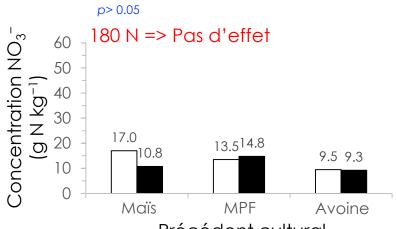
180 N

Site #2: Riche en P


2016

CMA

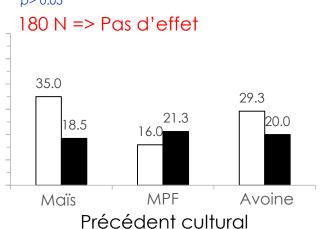

Introduction
Hypothèses
Objectifs
Méthodologie
Résultats
Conclusion


Site #1: Pauvre en P


Précédent cultural

Site #2: Riche en P

2016

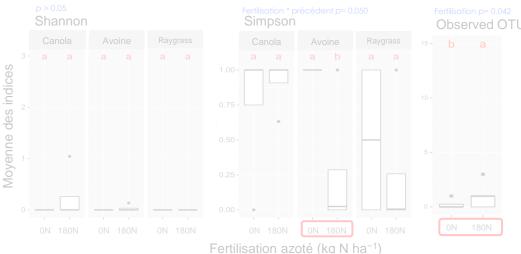

Précédent cultural

Précédent cultural

2018

p > 0.05

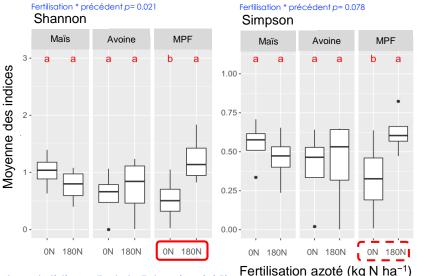
Diversité & Abondance


Introduction
Hypothèses
Objectifs
Méthodologie
Résultats
Conclusion

Diversité & Abondance

2016

Site #1: Pauvre en P



Introduction Conclusion

Effet 180 N

- Diversité des espèces
- Abondance des espèces

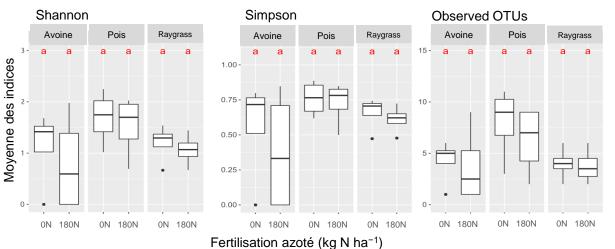
Site #2: Riche en P

Observed OTUs Maïs MPF Avoine а b 10 -0N 180N 0N 180N 0N 180N

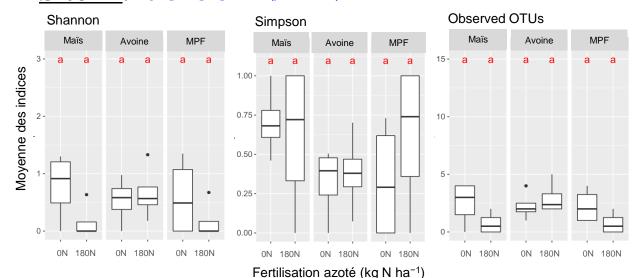
Fertilisation * précédent p= 0.021

Effet 180 N

Diversité des espèces & l'abondance des espèces => MPF


17

Analyse statistique: Test de Tukey (p< 0.05)

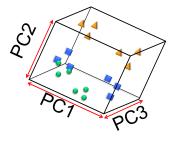

Diversité & Abondance

2018

Site #1: Pauvre en P (p > 0.05)

Site #2: Riche en P(p > 0.05)

Introduction
Hypothèses
Objectifs
Méthodologie
Résultats
Conclusion


RÉSULTATS

- ✓ ≠ Fertilisation
- ✓ # Précédent

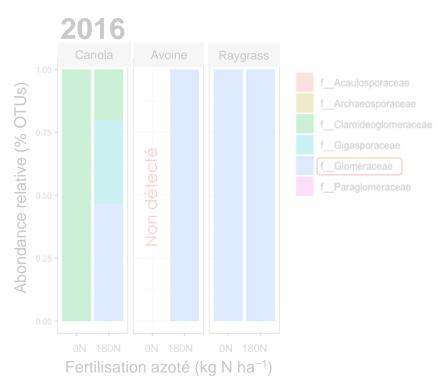
Diversité & abondance ne sont pas affectées

Diversité bêta

0N vs 180 N

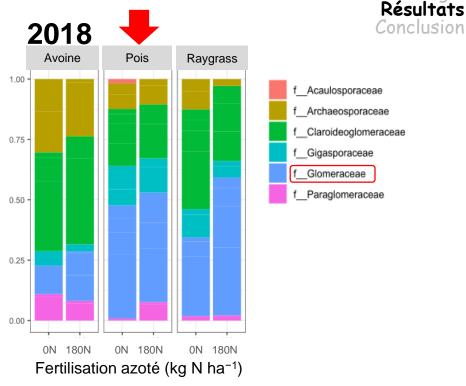
_	Site #1 (Pauvre P)				Site #2 (Riche P)			
PERMANOVA (Adonis)		2016		18	2016		2018	
	F	Pr(>F)	F	Pr(>F)	F	Pr(>F)	F	Pr(>F)
Précédent	-	-	2.18	0.01	0.95	0.48	0.56	0.94
Fertilisation	-	-	1.78	0.07	3.11	0.03	1.21	0.24
Précédent x Fertilisation	-	-	1.34	0.15	1.48	0.18	1.15	0.30

<u>Site #1 - 2016</u> Jeu de données était pauvre en CMA


Pois vs Raygrass (p = 0.042)

Avoine vs Raygrass (p = 0.606)

Avoine vs Pois (p = 0.156)

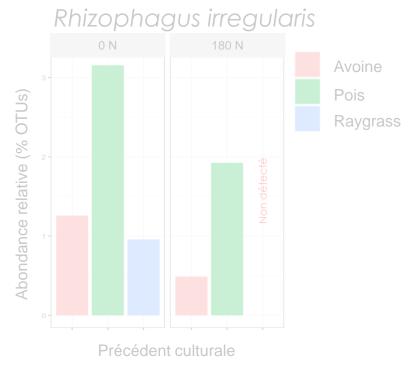

Site #1: Pauvre en P

Glomeraceae sp.

Effet Précédent p=0.004

Glomeraceae sp.

Avoine b

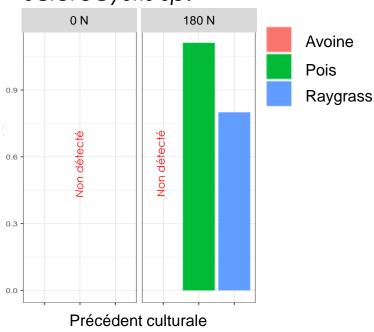

Pois a

Raygrass ab

Introduction

Site #1: Pauvre en P

2018


Effet précédent p=0.04

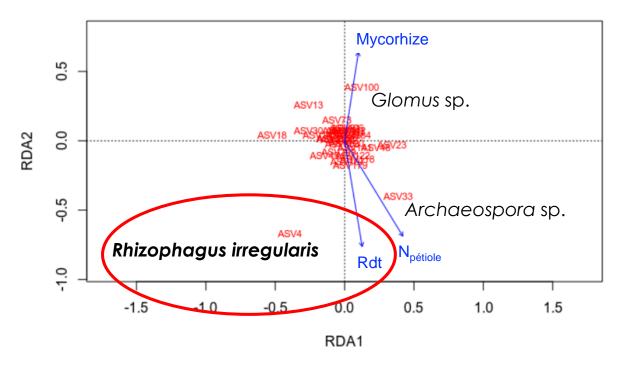
Avoine b

Pois a

Raygrass ab

Effet Fertilisation p=0.05

180 N > 0 N


Introduction

Conclusion

Site #1: Pauvre en P

2018

ADONIS	F	Pr(>F)	
Mycorhize	1.572	0.06	
N pétiole (g NO ₃ -N kg)	1.731	0.05	
Rdt pomme de terre (t ha ⁻¹)	1.900	0.03	

En résumé...

Fertilisation riche en N

Introduction
Hypothèses
Objectifs
Méthodologie
Résultats

- ✓ ↑ Rendement
 - Impact plus grand => Site riche en P

- ✓ ↑ Concentration N_{pétiole}
- ✓ **U** Concentration P_{pétiole}
 - Impact plus importante => Site riche en P

- ✓
 ▼ Taux de colonisation mycorhizienne
 - Impact important=> <u>Site pauvre en P</u>

- Affecté la composition de la communauté mycorhizienne
 - Impact plus grand => <u>Site pauvre en P (2018)</u>

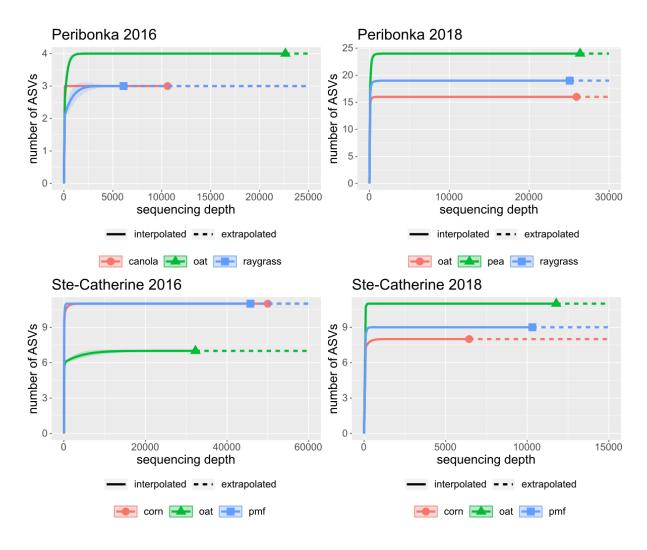
Retour sur les hypothèses

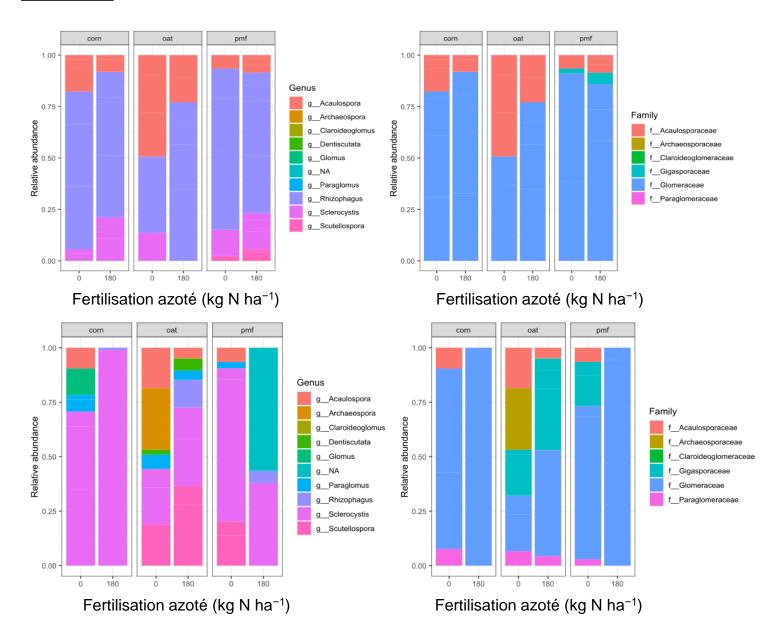
Hypothèses Objectifs Méthodologie Résultats

Fertilisation riche en N

Augmenté la croissance de la pomme de terre et sa demande en P;

N'a pas favorisé la colonisation mycorhizenne de la pomme de terre;


Influencé la diversité de la communauté mycorhizienne du sol et cela a varié selon le précédent cultural de la pomme de terre, **MAIS** aussi selon le type de sol.


Annexe

- √ 250 à 300 mg sol (6 sous-échantillons) extrait
 - Mobio kit (PowerSoil DNA extraction kit)
- ✓ Quantification de l'ADN
 - QuantiFluor dsDNA system et Glomax multi detection system (Promega, USA).
- ✓ Séquençage à haut débit (Illumina Miseq) du 18S rRNA
 - Pré-amplification (AML1/AML2);
 - Amplification (Franck_F/Franck_R).
- ✓ Total des séquences liés aux ASVs = 2.66 millions
 - Identification de 706 ASVs: 10% sont des champignons mycorhiziens arbusculaires (CMA);
 - 51 ASVs (espèces CMAs identifiées).

✓ Courbes de raréfaction:

Site #2: Riche en P

