SELES Model Builder’s Guide

Last Modified: 07/2002

SELES v3. 0
Spatially Explicit Landscape Event Simulator
Model Builder’s Guide

The Spatially Explicit Landscape Event Simulator (SELES) is a tool that provides a structured framework to guide the development and facilitate the rapid prototyping of spatial landscape models. The heart of SELES is a high-level, declarative modelling language, used to specify each of the processes and agents acting in a model, and a discrete-event simulation engine that interprets and executes the model. The specification of the model serves as a fairly clear description of the model semantics, and thus models may be easily compared, modified, and reused. The SELES language is general enough to allow the construction of models that are quasi-continuous, periodic, or episodic; with a fixed or variable time step; that are deterministic, process-oriented, or stochastic; and in which processes may operate locally, regionally, or globally and be either spreading or non-spreading. SELES models can combine aspects of cellular automata (Itami, 1994), discrete-event simulation (de Vasconcelos and Zeigler, 1993), spatio-temporal Markov models (Baltzer et al., 1998), and individual-based models.

All SELES models are composed of a set of raster layers, which represent the initial state of the model, along with a definition of behaviour, which is used to simulate changes over time to one or more of the raster layers. The basic spatial unit is a cell, contrasting with patch-based approaches such as described in (Wu and Levin 1997), although SELES does have some mechanisms that permit multi-cell patches to behave as a unit, and patches to be transient entities. The behaviour of a SELES model is described with a set of quasi-independent processes or agents of change. Each such agent is called a landscape event or a landscape agent, which we describe in detail in later sections. The initial conditions, coupled with the set of landscape events and agents, is called a scenario. This terminology allows us to differentiate between the overall simulation model and the individual spatial raster models, static landscape models and landscape event models that make up the scenario.

This document describes how to construct and run models using SELES. This is the primary reference document for modellers and gives links to the other documentation available. It contains specifications, instructions, hints, cautions, and examples of how to construct landscape simulation models with the SELES modelling system, in particular the conceptual basis for SELES landscape events and landscape agents. Understanding these is critical to apply SELES to transform a formal problem statement and conceptual model to a complete SELES simulation model.

The next section gives an overview of the SELES modelling paradigm. Section 2 covers input data formats. Section 3 covers static model generators, and statistical summary models. Section 4 covers dynamic model configuration. Section 5 covers general issues related to landscape events and agents, while section 6 and 7 cover details of events and agents. Section 8 describes the SELES language for building events and agents, and for some static models. The following are the other SELES documents referred to in this guide:

· SELES Scenario Reference: A description of SELES scenario scripting files.

· SELES/NT User Guide: A user’s guide for the SELES NT modelling environment/user interface software that describes how to load and execute SELES models.

1 Building Spatio-temporal Models with SELES

1.1 The Model Building Process

We recommend the following steps as a logical progression for model development. These steps assure that all aspects of a simulation scenario are identified and properly specified:

1. Problem statement: A simulation model should have a focus problem. This will help to identify the type of information required; an appropriate spatial resolution; the types of processes to be modelled; and the appropriate model type (e.g., deterministic vs. statistical) and detail for each of these processes. Problem statements can be simple or complex. Some examples include (i) examine the consequences of departures from the assumptions of commonly used models of fire frequency; (ii) investigate the effects of logging, grazing and forest encroachment on grassland biodiversity; or (iii) estimate the impacts of different harvesting systems over time on suitable habitat for mountain caribou.

We recommend that you identify each of the important processes to be included as landscape events in your model. Try to write an informal but precise version for each event at this stage (see example in section 3). Primary model outputs should also be identified, along with some indications of how they will be analyzed. For example, should a sequence of spatial layers be stored for each model execution or should a single variable be tracked over time. Most SELES scenarios involve some stochasticity, and so may require multiple-runs in a Monte-Carlo fashion. Hence, the type of model output is important, since it is easy to output vast quantities of information, which may be difficult to handle.

2. Information gathering: The problem(s) to be addressed usually suggest at least a starting set of spatial and aspatial information that needs to be included in the scenario as well as some of the processes that are important determinants of the landscape dynamics under study. The resolution selected for the model will affect the detail required of the spatial information as well as the processes to be modelled. More detail will be more precise, but processes will also have to be more detailed and simulations will be more time-consuming. In many situations the level of detail of existing spatial information will dictate the resolution of the model scenario.

3. Model prototyping: Model development can (and usually should) begin before the information gathering stage is complete. SELES provides a number of static model generators that are useful for model development, verification and refinement, but may also be used to provide simplified, synthetic spatial information during model prototyping. Such synthetic maps can be used as "placeholders" in the model prototype until the real data has been assembled. During this stage, the overall behaviour of process models should be defined, and the type of impacts they will have on the landscape. The impacts will depend on the problem statement. For example, a fire model could cause changes to species, age, understory community, percentage of canopy closure, amount of coarse woody debris, wood volume, etc. Process models can be formally described using diagrams, equations and natural language. It is important to unambiguously describe processes and avoid vague descriptions of model behaviour. Formal model descriptions facilitate the translation of verbal and conceptual models into the SELES modelling language, and also serve as a medium for communicating models to non-modellers, such as ecosystem experts, decision makers and people representing various interests.

4. Initial scenario: At this point, an initial scenario can be assembled, containing the initial conditions (real data or synthetic) and process model prototypes. Once the scenario is set up, the SELES simulation engine can be used to run and test the prototypes. This scenario provides a basis for model refinement and elaboration.

5. Model refinement: We view the modelling process as an iterative procedure. The steps up to the construction of the initial scenario form the first loop. At this point, modellers have often identified new ideas for improving the model as well as additional information that must be gathered. It is fruitful to go over all steps again. Revisiting the problem statement will ensure that the project remains on track. There is a tendency to include more and more details in a model, but it is unwise to include more details than necessary to address the problem, since this will probably increase uncertainty in the model results. The information required to parameterize process models increases as these models become more detailed. According to Occam’s razor, the best models are those with just enough detail to capture the dynamics of interest, and no more. We find it useful to create a table with state components (map or variable names) on one axis and process models (event names) on the other. In each cell of this table, notations can be made to indicate if the state component influences a process, if a process modifies the state component, or both. For example, the state component Aspect may influence the process Fire, while the state component Yield may be modified by the process TimberHarvesting.

1.2 The SELES Paradigm

SELES is a system intended to facilitate the specification and execution of landscape simulation models. SELES is not a landscape model itself. A SELES model consists of a set of raster layers and global variables, which define the state variables and initial state for the model, and a number of landscape events and agents, which define the dynamic behaviour of the model.

Each simulation scenario in SELES has two main components:

1. Initial state: This is the set of initial conditions of the landscape before a simulation begins (e.g. forest type, topography). It may be current information or historical and includes both spatial layers of interest and aspatial (global) information. Some of this state may be dynamically modified during a simulation, while other parts may be static. For example, a model of forest change may include in its set of initial conditions the seral state of the forest, which may change over time, and the topography, which remains constant for the duration of the simulation.

2. Landscape Events and Agents: Each agent or process responsible for change to the landscape state (e.g. forest succession, fires, timber harvesting) is specified as an independent sub-model called a landscape event or a landscape agent. The description of a landscape event defines its recurrence frequency and spatial domain (i.e., when and where the event should occur), along with a definition of its behaviour (i.e., how it spreads and what its effect on the model state is). All feedback mechanisms between processes are accomplished through state transitions to one or more raster layer, with no direct inter-event communication. Landscape agent definitions specify starting locations and numbers of individuals and populations, and rules governing movement, mortality and reproduction.

Any number of rasters may be incorporated in a model, but they must represent integers (see the Scenario Reference for information on how to scale a real-value raster during load). For example, GIS map layers such as vegetation cover, digital elevation models, or time-since-disturbance are commonly used as SELES state variables. Synthetic layers, such as can be produced using the SELES static pattern generators, can also be used in model scenarios (see Section 4). The SELES simulation modelling language provides a declarative syntax for describing the properties of landscape events, and the simulation engine interprets and executes the model from these specifications, resulting in changes over simulated time to the landscape state. The relationships between the components of a SELES model are shown in Figure 1.

SELES models are usually stochastic, but can range from completely random to entirely deterministic. For this reason, SELES models may require a Monte Carlo approach, since any single run will represent only one possible sequence of state changes for a particular model. One of the strengths of building models in SELES is the ability to mix random and deterministic components in the same modelling framework. For example, a theoretical or empirical model can be prototyped quickly, primarily employing statistical representations of most processes. As greater understanding of the system is developed, this statistical behaviour can be progressively replaced by a more mechanistic approach to describing each process. Earlier models can then be used as benchmarks from which to judge the increase in predictability introduced by the subsequent refinements.

Figure 1. Components of a SELES Model with three spatial state variables and two landscape events. This model is interpreted and executed by the SELES Discrete Event Simulation engine (DES).

Landscape events specify when events occur (e.g. fire return interval), where events initiate (e.g. in which cell(s) an insect outbreak starts), and what effect the event has on these cells (e.g. timber harvesting may reset the age of a forest stand). If an event may spread (e.g. fire), landscape events specify when spreading takes place, and to where. Figure 1 shows a conceptual view of this general procedure. Landscape events may also depend on contextual information. For example, we may express that lightning strikes are more likely on ridge tops than in valley bottoms, or that timber harvesting must follow a given harvest schedule. By taking care of how landscape events change landscape patterns, modellers are freed from the task of programming and can focus on the behaviour of landscape dynamics.

1.3 SELES Discrete Event Simulation Paradigm

All SELES models are executed by the discrete event simulation engine (DES). Understanding how this engine works is critical to successfully building a SELES model. The DES uses a priority queue to maintain scheduled future events in their chronological order. It runs asynchronously -- the current time is always the time of the current event (i.e. the one at the head of the queue). During the simulation, events are scheduled to occur at some future time (i.e. events are added to the queue). When it is time to execute an event (i.e. the event is at the head of the queue), the DES removes it from the queue, and executes the behaviour specified for that event. This behaviour may involve altering one or more of the state variables and scheduling one or more future events. A diagram of this “event loop” is shown in Figure 2. Section 3 describes how to specify the properties of a landscape event and the behaviour to expect from your specification.

Figure 2. The "event loop" performed by the SELES Discrete Event Simulation Engine (DES). The behaviour of the event (where and when the event occurs and what happens during the event) is determined by the specification of the Landscape Event itself.

1.4 SELES Model Structure

SELES models consist of a set of interacting files containing landscape events and agents, model configuration information and scenario scripts (Figure 3) Static models are used to either general static layers or suumary inforamtion. A dynamic model configures a simulation by defining the spatial and aspatial state, land ading landscape events and agents. Landscape events and agents model the dynamic processes acting in the landscape. These are primarily specified by defining their properties (see sections 5-7). Event/agent properties and some static models are built using functional and procedural expressions (see section 8). Since scenario scripting is of interest to both model builders and users, it is described in detail in the companion SELES Scenario Reference document.

1.5 Assumptions and Limitations

SELES models can be quite simple, but require careful thought if you are going to produce a model that can be interpreted. In addition to the caveats that go along with any modelling, the following limitations should be considered when modelling with SELES:

1. Some error checking is provided to ensure that parameters are in bounds, etc. However, there is no checking to ensure that your model is doing anything sensible! Always run your models on a “test suite” of data for which the model outcome can be easily verified. These should include, but not be limited to, testing boundary conditions for the model (e.g. the simplest possible initial conditions for the model), and testing specific behavioural characteristics for each landscape event in the model.

2. SELES does not interpret the values on your state raster layers. It is up to you to know the correct interpretation and units for these values. This is particularly important for categorical data, where the numerical value in a cell only indicates which category the cell belongs to, not the magnitude of some variable. Using constants in the model specifications are useful to ensure that the correct index is used for each category.

3. Cells in a raster can be defined as “undefined”. This is normally used to delineate areas that are not of interest (e.g. out of the study area). SELES makes no a priori decision as to undefined values. However, individual models can contain undefined values, but it is up to the modeller to ensure that no operation will be performed on any cell that has an “undefined” value on any raster layer used by that operation. In general this is easy to do, but care must be taken.

4. All rasters layers used in a single model must have the same grain (cell size) and extent (number of rows, cols). SELES makes no assumptions about the grain of your raster cells. It is up to you to determine the appropriate scale and behaviour at that scale for your model. Note: SELES does provide some capability to do nearest neighbour sub-sampling, however you are advised to use this operation with caution. SELES/NT also provides a utility to align two layers so that their georeferencing information matches.

2 Input Data

2.1 Non-spatial Tabular Data

Non-spatial data can be input to a model in the dynamic model configuration file. This data must be in text (ASCII) format, as a tab-separated set of columns. The first row of the file can optionally have column labels.

Figure 3. SELES models consist of a scenario file which loads GIS layers and model configuration files, and issues various commands. These in turn load events and agents which are based on the expression language.

2.2 Spatial GIS Data

Currently, the GIS data formats supported by SELES are GRASS, ARC ASCII, and ERDAS. These are all raster formats, where a raster is a rectangular grid of fixed size cells, and each cell has a single integer value. Most GIS packages provide support routines to output or input raster information in one of these formats. The restriction to integer values does not limit models as one might initially suspect. To handle real values of any fixed-point precision, basically one must decide on the “unit” represented by a raster. The default unit is 1, but one could easily allow two decimal places by using a unit of 0.01. To use values in a SELES model, they simply need to be divided by 100 when retrieved from the layer and multiplied when stored. For example, the number 12.34 would be stored as number 1234 in the raster. See the scenario reference for how one can scale real-valued rasters when loading. The only limitation to the range of data that can be stored in a raster is on the machine word size, which is four bytes for an integer in both Windows and Unix.

Most GIS systems support a variety of ancillary data associated with rasters. For the purposes of SELES, only the raster data and header (which contains raster dimensions and georeferencing information) are required. For use with GRASS binary data (compressed or uncompressed), SELES recognizes the directory structure of a GRASS database. Basically, raster information for a particular data set are stored in a set of directories with fixed names with the name of that data set. All of the raster files are named after the layer they represent and are stored in a subdirectory called “cell” while the header files are stored in a subdirectory called “cellhd” with the same name as their corresponding raster file. In SELES, the important file is the raster file. Thus, when opening GRASS GIS files, and when including GRASS GIS files in model scenarios, you must specify the raster file in the “cell” subdirectory. SELES will locate the associated header file from the raster file. The other formats supported all contain both header and raster information in a single file.

In addition to the raster and header files, GRASS rasters can also have a colour lookup table and legend associated with them. These optional files are respectively located in subdirectories called “colr” and “cats” in the data set directory, and must also have the same name as their associated raster. If there is no colour file, then SELES NT uses a built-in algorithm for creating colour displays of rasters. If a colour file is found, then SELES will use these colours for displaying a raster. Generally, the colour files are produced by a GIS and have a fixed format. However, to ease manual creation and modification of colour files, we have generalized the GRASS colour file format.

A colour lookup table file is basically a list of raster values followed by RBG (red, green, blue) colour triples. Each colour value in a triple is a number between 0 and 255. Thus, pure red is represented as 255:0:0, while dark purple may be represented by an even mix of red and blue as 180:0:180. The following colour specifications are supported by SELES, where index is a possible value in a raster and RGB is a colon separated colour triple. Punctuation must be provided as shown.

index: RBG

- set the colour of index to RGB

index1-index2: RGB

- set the colour of all values in the range

 [index1, index2] to RGB

index1: RGB1 index2:RGB2
- interpolate the colours from RGB1 to RGB2over

 the range [index1, index2]

If an index has more than one colour specified then the last colour given will be used. If an index has no colour specified, then the default of black will be used.

A legend (category) file is simply a list of raster values followed by a colon followed by the textual description associated with that value:

Number: label

- the value Number is associated with the given label.

Legends can be used to automatically define constants for use in a model and for text output. To be used in this way, labels should not contain spaces or punctuation. See the SELES Dynamic Model Reference for how to load legends into a model to define sets of constants, and the SELES Language Referencefor how to use legends for text output in files.

3 Static models

3.1 Synthetic Maps

SELES provides a number of pattern generators that can be used to produce synthetic maps for initial conditions. Synthetic maps can serve a variety of useful functions in model development. Before real spatial data is available, synthetic maps can provide surrogates for layers to use during model prototyping and refinement. As simplifications of real maps, they can assist model verification by allowing modellers to observe the behaviour of model components that may be obscured by the complexity of real maps. For this same reason, synthetic maps are also useful for model demonstrations. As theoretical ideals, synthetic maps may be used in models that explore and test landscape ecology hypotheses.

There are three types of synthetic maps that can be produced using SELES. Each of these pattern generators creates a rectangular, N-valued raster. In general, the pattern generators use a stochastic process to create a pattern. The pattern created is controlled by a set of pattern constraints specified by the modeller via a set of commands. These commands are stored in an ASCII file, and form the pattern model definition.

It is important to make a distinction between a model, which is a set of commands that constrain the type of patterns generated, and an instance of that model, which is a particular pattern map generated using these constraints. In a deterministic model, these may be considered equivalent. However, since most of the SELES pattern generators use stochastic algorithms, many patterns can be generated from the same model. In this document we use the term “model definition” to refer to the model itself, and “model instance” to refer to a particular pattern generated by the model.

Neutral models generate landscape patterns in the absence of ecological constraints (Gardner et al. 1987; Gardner et al. 1994). Generally, a neutral model specifies the relative abundance of k features, which are then stochastically distributed across the raster. Additional constraints can be included, such as adding a contagion, or clumping, factor or forcing the relative abundances to be exact rather than expected proportions.

Site-specific models generalize neutral models by allowing pattern to be controlled by spatial constraints. Basically, in addition to the constraints allowed for neutral models, a site model specifies a function that determines, for each cell in the raster, the relative probabilities for each of the k features. For example, the function may specify an elevational gradient, where some features have a high relative probability at low elevations, but a low relative probability at high elevations. This function is specified using the SELES modelling language described in the next section. A site-specific model is similar to a raster overlay, a tool provided with most GIS packages.

Fractal models generate layers using fractal geometry. There have been a number of fractal landscape generators described in the literature. SELES provides one type of fractal model generator that we have found useful. The parameters of a fractal model control the variability and texture of the pattern. In addition, a set of control points can be provided to “pin” the landscape to specific values at certain locations. These control points give the overall shape of the model while the parameters control how the details are stochastically filled in. Finding suitable replicates at the landscape scale is an inherent problem in landscape ecology. Fractal models provide a synthetic means of creating a set of digital elevation models (DEMs) that are similar to a DEM of interest.

3.2 Statistical Summary Models

These models simply summarize information using an expression to produce a single value (e.g. mean). As with the pattern generators, statistical summary models are specified by a set of commands that determine the operands and operation of the model.

3.3 Model Specification

This section describes the syntax of the commands used to create static model definitions, along with a description of the semantics of these commands (i.e. the effect of the command on the pattern generated). We start with a description of the general rules used to describe the model definition syntax. Syntactical constructs and command sections common to more than one model type are then given, followed by a detailed descriptions of the syntax and semantics of each of the three types of static models.

3.3.1 General Syntax Rules

· Every command must be placed on a separate line (i.e. separated by a carriage return).

· Commands in a model definition consist of keywords, values and expressions.

· All commands, except the model type declaration at the top of the file, are optional. The default value for each command is given with the syntax description.

· Keyword are shown in upper case and must be spelled exactly as shown although the parser is not case sensitive. Portions of keywords shown in italics are optional (e.g., the syntax description “MINIMUM” indicates that either “MIN” or “MINIMUM” is valid).

· Expressions are described in section 8.

· Values preceded by a “#” must be integers, those preceded by “#.#” may be any numeric;

· NumberPairs and NumberLists may be enclosed in optional brackets “()”, but each number in the list must be separated by a comma (e.g., “(1,2,5,6)” or “1,2,5,6”)

· Values preceded by a “%” are logical value (true or false). Logical valuse may be any of the following:
‘0’, ‘OFF’, or ‘FALSE’ to indicate false; ‘1’, ‘ON’, or ‘TRUE’ to indicate true.

· Literal string values must be enclosed in double quotes (e.g., “This is a literal string”).

· Filenames must be specified as literal strings.

· All other values are identifiers.

· White space (spaces, tabs, carriage returns) is ignored.

· Comments can be placed anywhere in a model definition file. Comments are surrounded by “/*” and “*/” (e.g. /* This is a comment, and will be ignored by the parser */). If the parser encounters “//”, the remainder of the line is treated as a comment.

· A command followed by a superscripted asterisk (*) indicates that the command may be repeated zero or more times. A command followed by a superscripted plus sign (+) indicates that the command may be repeated one or more times.

· Two commands separated by a vertical bar (|) indicate alternate forms for a command.

· Any {Label} enclosed in braces “{}”, indicates a substitution. This defines a section of commands described elsewhere in the section.

· Values enclosed in “<>“ indicate that the modeller may substitute an appropriate value.

Most of the model definition commands have a meaning obvious from their keyword. In cases where the meaning of a command is not obvious, a description of the command is included to the right of the syntax. A more detailed discussion of the general pattern generation or statistical summary algorithm and usage of the various commands precedes each of the model definitions.

3.3.2 General Commands Common to Models

Each model definition is described in two sections. The first section defines the model's name and its size. The second section defines the model's pattern or constraints. The definition section should be specified before the model section. However, the commands within a section may be in any order.

The Model Definitions section is common to all models and describes the physical characteristics of the model. For example, this includes the model name, the dimensions of the raster to create, and the number of values in the raster.

MODEL NAME : <Identifier>
Default: blank or no name

MODEL SIZE : <#rows>,<#cols>
Specifies the size of the raster as a

number of rows and columns.

Default: 100x100

MODEL ROWS : <#rows>
Alternate forms for specifying

| MODEL HEIGHT : <#rows>
the number of rows and

MODEL COLS : <#cols>
columns in the raster.

| MODEL WIDTH : <#cols>

NUM TYPES : <#types>
Specifies the number of features or

values in the model. Default: 2

MINIMUM TYPE : <#lowest_value>
Specifies value of first feature

| MINTYPE : <#lowest_value>
(e.g., zero vs. one based) Default: 0

MAXIMUM TYPE : <#highest_value>
Specifies value of last feature .

| MAXTYPE : <#highest_value>
Default: (MIN + NUM)-1

Note that only one of the number of types and the maximum type need be specified. Together with the minimum type, the other value is determined.

The following commands are common to more than one type of model. Remember commands within the model section may be specified in any order.

Feature Distribution commands describe the relative distribution of each raster value in the model (these values are called features). For example, in a two-valued model (e.g. black and white), this section would be used to describe that 40% of the cells should be black, and 60% white.

RELATIVE PROBABILITY OF FEATURE <#FeatureNumber> : <#.#Prob>*

Specifies the relative probability of

the feature, given by FeatureNumber.

Default: 1

RELATIVE PROBABILITY : <#.#NumberList>
Specifies the relative probability for

each feature, in order. NumberList is

a comma separated list of N floating

point values (e.g., 0.25, 0.5, 0.67),

where N is the number of features in

the model.

USE CONTAGION : <%logical>
Specifies if model uses contagion.

Default: False

CONTAGION OF FEATURE <#FeatureNumber>* : <#.#ContagionValue>

Specifies the contagion of a single

feature, given by FeatureNumber.

One such command may be given

for each feature in the model.

Default: 1

CONTAGION : <#.#NumberList>
Specifies the contagion value for

each feature, in order. NumberList is

a comma separated list of N floating

point values (e.g., 0.25, 0.5, 0.67),

where N is the number of features in

the model.

Miscellaneous commands are used to adjust some controls not directly related to the pattern being generated.

USE OLD MODEL : <%logical>
Specifies whether the original

algorithm or the improved algorithm

should be used. Default: False

COLOUR DISPLAY : <%logical>
Display the raster as a colour or grey

scale image. Default: True
OUTPUT FREQUENCY : <#days>
Used only in cases where the model

is to be re-generated at some interval

as part of a simulation.

3.3.3 Neutral Percolation Models

A neutral percolation model yields simple, random patterns based on percolation theory (see Gardner et al. 1987). In its most basic form, this model has two feature types (e.g., black and white, or susceptible and non-susceptible). Each feature, i, is assigned a probability of occurring, pi. For each cell in the model a uniform random number between 0 and 1 is drawn and used in conjunction with these probabilities to select the feature that will occupy the cell. On average, feature i will occupy a proportion of the cells equal to pi, although the actual pattern of each instance of the model will be different. Two extensions have been incorporated into this basic form:

1) Any number of features is allowed. The probabilities for each feature are given as relative and will be adjusted by SELES to sum to one, while keeping their same relative value.

2) Contagion can be added to the model by making it more or less likely for same valued features to occur adjacently. The original contagion model proposed in Gardner et al. 1991 contained a serious horizontal bias, resulting from the algorithm that assigned cell values. (If the cell values are assigned strictly in order along rows and/or columns, then a directional bias in the pattern will always occur.) We provide an algorithm for assigning contagion that highly reduces or removes this bias.

A number of ‘start’ cells are selected at random (as opposed to selecting a single corner cell to start). These cells are assigned a value based on the feature probabilities. The algorithm ‘grows’ the pattern out from each of these start locations. Cells adjacent to previously assigned cells are selected in a random order. This is a very useful algorithm because it gives the modeller more control over the number of patches in high contagion models. To use this algorithm, set <NUM START POINTS : #integer> and set <USE OLD MODEL : false>. The more start points selected, the more patches will be created. In models with little or no contagion, the number of start points makes little difference, but this algorithm will still produce a pattern that has no directional bias.

Syntax for a percolation neutral model:

NEUTRAL MODEL <any text>

{ Model Definitions }

{ Miscellaneous commands }

{ Feature Distribution }

NUM START POINTS: <#points>
Specifies the number of cells from

which to build the final pattern.

Default: 1
EXACT PROPORTIONS
Indicates that the Feature

Distribution specifies exact rather

than expected proportions. Default:

False

3.3.4 Site-Specific Raster Overlay Models

A site-specific model yields a pattern that is influenced or determined by some other spatial variable(s) or map(s). In other words, the value assigned to a cell is “site-specific”, or dependent on the characteristics of the cell. In its most basic form, this model is similar to a basic GIS raster overlay. The value at a cell in the model is simply a deterministic function of the values at that location on the other rasters (e.g., yi,j = f(xi,j) * g(zi,j)). However, it is also possible to combine this type of overlay model with a random, percolation-type model. In this case, the probability of a feature occurring in a cell is a function of the values at that location on the other rasters (e.g., p(Feature1 at cell i,j) = f(xi,j) * g(zi,j)). A cell expression (see SELES Language Reference) is used to assign this functional relationship.

There are two ways in which the cell expression may be used. If the expression is not a classified distribution or contagion is not begin used, then the expression is simply evaluated at each cell in the landscape. The value of the expression at each cell produces the model instance. Note that contagion is only applied when the expression is a classified distribution.

If the expression is a classified distribution and contagion is being used, the algorithm is somewhat more complex. As for the neutral models, one or more start points are selected at random, and the value is selected using the site-specific probabilities defined by the expression. Subsequent cells as selected at random from those adjacent to previously assigned cells. For each cell, the probabilities of the expression are modified using the neighbouring cells and the contagion value.

Note that the relative probabilities are only applied when the expression is a classified distribution. In this case, the probabilities defined for each value in the expression are multiplied by the specified relative probabilities. This feature is primarily intended for interactive use, where the relative probabilities can be modified via the user interface between generation of model instances.

Syntax for a site-specific, raster overlay model:

SITE MODEL <any text>

{ Model Definitions }

{ Miscellaneous commands }

{ Feature Distribution }

NUM START POINTS: <#points>
Specifies the number of cells from

which to build the final pattern.

Default: 1
CELL EXPRESSION FILENAME : <“FileName”>
Specifies the function used to assign

probabilities. See SELES Language

Reference for cell expression format.

Default: None

{MapBlock Definition}
Specifies the relationship between

variable names in the cell expression

and rasters to be used in the model.

where a Map Block specifies a mapping between Variable Names in the cell expression and raster names to be used in the model computation. One such mapping must be made for each raster layer variable in the cell expression. A Variable-View map block has the following format:

VARIABLE-INPUT VIEW MAPS :
Specifies the start of a map block and

| INPUT VIEW MAPS :
may indicate the number of maps

used in the function. Must be
| VIEW MAPS :
specified prior to the individual

mappings.

<VariableName> = <ViewName>*
Specifies a single map (link) between

a Variable Name and a raster in the

named view (window).

3.3.5 Fractal Landscape Models

A fractal model yields a pattern generated using a mid-point averaging fractal algorithm. Unlike the other two models described above, which are patch-based, the patterns generated by fractal models are continuous. The patterns generated by this program are very similar to a raster digital elevation model (DEM), where each cell contains the elevation at that location, or an abundance map, where each cell contains the number of individuals counted at that location. The parameters of the model allow you to control many aspects of the fractal generation algorithm. You can also define a set of cells whose values are fixed when the model is created. These points give the model a ‘macro-topography’. In other words, these points create a common, coarse-scale pattern between instances of the model.

Fractal models are useful to create synthetic replicates of a DEM or other continuous map. By specifying control points, all instances will have a similar ‘macro-topography’, but will differ in finer details.

Syntax for a fractal landscape model:

FRACTAL MODEL <any text>

{ Model Definitions }

{ Miscellaneous commands }

FRACTAL DEGREE : <#.#Number >
The degree of variation. Default : 1

FRACTAL RATIO : <#.#Number >
The rate of reduction of variation at

smaller scales. A ratio of 1 is linear

reduction. A ratio less than 1 is more

rapid reduction than expected and

greater than one results in more

variation at small scales than

expected. Default : 1

CONCAVITY THRESHOLD : <#.#Number >
The threshold below which a cell is

deemed to be concave. A value of 0

will ignore concavity. Default : 0

CONCAVITY SLOPE : <#.#Number >
The rate of reduction in variation for

concave cells (with maximum

reduction at maximum concavity).

Default : 1

RANDOM TRIANGULATION : <%Logical >
Default : false. Specifies whether

subdivision is done using a mid-

point or a random subdivision of

triangles.

{HeightBlock Definition}
Specifies control locations for the

model.

where a Height Block is used to specify control points that “pin” the model at specified locations to given values (heights), and has the following format:

NUM HEIGHT POINTS : <#Integer>
Specifies start of the height block.

| CONTROL HEIGHT POINTS :
Must be specified before any height

point.

HEIGHT POINT : <#x, #y, #z>*
Specifies an (x,y,z) coordinate that

| <#x, #y, #z>*
fixes the value, z, at the cell (x,y).

The triplet may have the form (x,y,z)

or x,y,z

3.3.6 Statistical Summary (or Value) Models

A statistical summary model yields a single value for the entire landscape that is influenced or determined by some other spatial variable(s) or map(s). In general, this will be a statistic such as a maximum or mean value computed from the result of a function applied to every spatial location in the landscape. As for the site-specific models, this function may be deterministic or stochastic, and it is specified using a cell expression (see SELES Language Reference).

Syntax for a statistical summary model:

VALUE MODEL <any text>

{ Model Definitions }
Note: Model dimensions do not

apply to statistical summary models

{ Miscellaneous commands }
Note: Colour display does not apply.

{ Statistic Type }
Specifies how the resulting values

are to be combined into a final value

CELL EXPRESSION FILENAME : <“FileName”>
Specifies the function used to assign

probabilities. See SELES Language

Reference for cell expression format.

Default: None

{MapBlock Definition}
Specifies the relationship between

variable names in the cell expression

and rasters to be used in the model.

See the definition of site-specific

raster overlay models.

where a Statistic Type is used to specify how the values computed at each cell are to be combined into a resultant, and has the following format:

STATISTIC: SUM

Sum the values

| STATISTIC: PRODUCT

Multiply the values

| STATISTIC: MIN

Find the minimum value

| STATISTIC: MAX

Find the maximum value

| STATISTIC: MEAN

Compute the average value

4 Dynamic model configuration

4.1 Initial Conditions and State Variables

The state of a SELES model consists of a set of spatial raster layers and a set of global variables. The state at the start of a simulation is called the initial condition. Some of the state may be static and some may be dynamic, depending on the model specified. SELES makes no explicit distinction between static and dynamic information.

Spatial information layers can be any raster maps from any source, including raster layers from a spatial database, such as a geographic information system (GIS). Global variables can be used both to control (e.g. parameterize) a model, for state variables, and to obtain aspatial output from a simulation.

4.2 Global Constants and Variables

Global constants are simply floating point values that may be used anywhere a numeric value can be used. Since they are specified by name, they improve model readability, and they allow changes to be made only in one place, improve model maintenance. They also facilitate loading in input values from files.

Global variables like constants, but are dynamic, and so may influence or be influenced by one or more landscape events in a SELES scenario, and provide aspatial state for a model. Global variables can act as parameters for the model to provide model control at the simulation interface level, or as output statistics. This allows some users to be unaware of all the details contained in a landscape model, but still have a means of defining or controlling model behaviour. For example, global variables could be used to control fire frequency, amount of logging, management strategy, etc. Global variables can be referred to in any expression within a landscape event.

4.3 Dynamic Model Specification

A SELES Dynamic Model configures the state space and sub-models applied in simulation. A dynamic SELES model configures the initial conditions and dynamic process models for a simulation and consists of a set of landscape events, mappings from variables in landscape events/agents to rasters in views (windows), legends, and initial values for global variables. This section describes the syntax of the commands used to create dynamic model definitions, along with a description of the semantics (meaning) of these commands. The same general rules from the static models applies to dynamic models (3.3.1).

A dynamic model definition is described in two sections. The first section can define the model's name, and size and time units. The second section defines and configures the model's components. The definition section should be specified before the component sections. Otherwise sections may be in any order. The following is the general format of a dynamic model:

SELES MODEL <any text>

{ Model Definitions }

{ Miscellaneous commands }

{ Landscape Events}

{Initial State Variable Mapping}
Links variable names in landscape

events to rasters to be used as the

initial state for those variables.

{Dynamic State Variable Mapping}
Links variable names in landscape

events to rasters to be used as the

dynamic state for those variables.

{Dynamic State Output Bounds}
Specifies the value bounds for the

dynamic rasters.

{Dynamic State Output}
Specifies output of dynamic rasters

to files during a simulation.

{Legends}
Defines legends which area essentially

arrays of constants.

{Global Constants}
Specifies global variables and their

initial state values.
{Global Variables}
Specifies global variables and their

initial state values.
4.3.1 Model Definitions

The Model Definitions section describes the physical characteristics of the model and includes the model name and dimensions.

MODEL NAME : <Identifier>
Default: blank or no name

MODEL SIZE : <#rows>,<#cols>
Specifies the size of the model as a

number of rows and columns.

Default: 100x100

MODEL ROWS : <#rows>
Alternate forms for specifying

| MODEL HEIGHT : <#rows>
the number of rows and

MODEL COLS : <#cols>
columns in the model.

| MODEL WIDTH : <#cols>

TIME UNITS <BaseUnit> <MajorUnit> <#Factor> <#DefaultHorizon>

 Species the name for a single time unit, and metaunit (e.g. days and years), as well as the default simulation length. This only affects the user interface.

4.3.2 Miscellaneous Commands

OUTPUT FREQUENCY : <#days>
Specifies the default refresh rate for

dynamic layer views.
4.3.3 Landscape Events and Agents

Specifies the landscape events and agents used in the model (see the SELES Model Builder’s Guide and Language Reference).

LANDSCAPE EVENTS:
Species the landscape events and

LandscapeEventFileSpec*
agents to include in the scenario.

A LandscapeEventFileSpec takes one of the following forms:

LANDSCAPE EVENT: <“FileName”> %Use
Species the filename containing a

| <“FileName”> %Use
landscape event or agent definition.

“Use” is anoptional flag (ON/OFF) that

indicates whether or not to include

the event in a simulation, with a

default value of ON.

4.3.4 Initial State Variable Mapping

A Variable Mapping specifies a mapping between Variable Names in the landscape events and raster names to be used in the model simulation. One initial state mapping must be made for each raster layer variable used in any landscape event, unless the desired initial state is all zeros. The initial state variable mapping specifies the rasters to use as initial conditions for layer variables. An Initial State Variable-View map block has the following format:

VARIABLE-INPUT VIEW MAPS :
Specifies the start of a map block and

| INPUT VIEW MAPS :
may indicate the number of maps

| VIEW MAPS :
specified. Must be specified prior to

the individual mappings.

<VariableName> = <ViewName>*
Specifies a single map (link) between

a Variable Name and a raster in the

named view (window). The raster view

must exists.
4.3.5 Dynamic State Variable Mapping

A Variable Mapping specifies a mapping between Variable Names in the landscape events and raster names to be used in the model simulation. One such mapping must be made for each raster layer variable used in any landscape event, unless the variable is static. The dynamic (output) state variable mapping specifies the rasters to use as the dynamic (changing) state for layer variables. A Dynamic State Variable-View map block has the following format:

VARIABLE-OUTPUT VIEW MAPS :
Specifies the start of a map block and

| OUTPUT VIEW MAPS :
may indicate the number of maps

specified. Must be specified prior to

the individual mappings.

<VariableName> = <ViewName>*
Specifies a single map (link) between

a Variable Name and a raster in the

named view (window).

4.3.6 Dynamic State Output Bounds

Prior to running a simulation, SELES cannot foresee the range of values that are valid for a raster. This makes display and optimization of the raster difficult. Thus, the bounds for each dynamic raster need to be specified using the following format:

OUTPUT MODEL BOUNDS :
Specifies the start of the output

bounds block. Must be specified prior

to the individual bounds.

<VariableName> MINTYPE: #Min MAXTYPES: #Max*

<VariableName> MINTYPE: #Min NUMTYPES: #Num*

<VariableName> #Min, #Max
Specifies that the raster will be in the

<VariableName> #Max*
range [Min,Max] or

[Min, Min+Num-1]. In the last option,

the min is assumed to be 0.

4.3.7 Dynamic State Output

During a simulation, a modeller may wish to periodically output the current state of a raster layer. The user can either specify a directory or a file name base for the raster. If a directory is specified, the file name base will be the name of the raster. If a file name base is specified, the directory will be the directory of this file name. The actual name of a file to output will have as a suffix the simulation run number and the sequence number of the output. For example, if the file name base is “Species”, then the 3rd output of the raster during the second simulation run will use the file named “Species2.3”. Setting up raster output is done using the following format:

OUTPUT MODEL FREQUENCY:
Specifies the start of the raster output

block. Must be specified prior to the

individual output specifications.

<VariableName> FREQUENCY: {Expr} FILE: <“FileNameBase”> TYPE: {OutputType}*

<VariableName> FREQUENCY: {Expr} DIRECTORY: <“Dir”> TYPE: {OutputType}*

Specifies that the raster for Variable

Name will be output at the specified

frequency using the FileNameBase.

where OutputType is one of:

GRASS
Uncompressed GRASS binary.

GRASS COMPRESSED
Compressed GRASS binary

GRASS ASCII
GRASS ASCII format

ARC ASCII
ARC ASCII format

ERDAS8
8-bit ERDAS format (only use for

rasters with bounds less than [0,255])

ERDAS16
16-bit ERDAS format.

NOTE: If the expression includes a variable, then it must have the form: <variable>

4.3.8 Global Constants

Specifies the names and values of global constants used in the model.

GLOBAL CONSTANTS:
Species the start of a global

constant block. Must be specified

prior to the global constant

specifications.

<ConstantName> = {Expr}*
Specifies a global constant (Constant

Name) and its value.

<ConstantName> = <Filename>
Loads constant values from a file.

4.3.9 Global Variables

Specifies the names and initial values of global variables used in the model. In SELES/NT, the global variables specified here will show up in the user interface. Global variables shared between landscape events must be specified here. Global variables in landscape events that are not specified here cannot be shared among events, will not show up in the user interface and have an initial value of 0.

GLOBAL VARIABLES:
Species the start of the global

variable block. Must be specified

prior to the global variable

specifications.

<VariableName> = {Expr}*
Specifies a global variable (Variable

Name) and its initial value.

<VariableName>[{Expr}] = <Value>
Specifies a global variable vector with

a common initial value.

<VariableName>[{Expr},{Expr}] = <Value>
Specifies a global variable 2-D array

with a common initial value.

<VariableName> = <Filename>
Loads values for a global variable from

a file.

4.3.10 Legends

A legend us defined as a vector of labels. Legends both define the set of constants and as a lookup vector for label output in RECORD expressions in landscape events.

LEGENDS:
Species the start of a legend block.

Must be specified prior to the legend
specifications.

<LegendName> = {#:<Label>}*
Specifies a list of number-label pairs for

defining a legend.

<LegendName> = <Filename>
Loads values for a legend from a

file. A legend file has one row for each

value-label pair, where each pair is

specified with the form “# : Label”

4.3.11 Configuration Expressions

Configuration expressions are a restricted form of expression used to define values based on arithmetic combinations of numbers and previously defined constants or variables.

{Expr}= #.#

{Expr}= <constant>

{Expr}= <variable>

{Expr} = ({Expr})

{Expr} = {Expr}+ {Expr}

{Expr} = {Expr} – {Expr}

{Expr} = {Expr} * {Expr}

{Expr} = {Expr} / {Expr}

{Expr}= {Expr} % {Expr}

{Expr} = {Expr} % {Expr}

5 SELES Landscape Events and Landscape Agents
Landscape event and agent specifications consist of two parts: a set of definitions that describe the layers and variables that can be referred to and modified by the sub-model, and a number of properties that specify the behaviour of the process being modelled. Each property defines some aspect or characteristic of the process being modelled by the event, and is optional, with a well-defined default, so a model can be precisely and succinctly defined. A set of declared variables defines the spatial and aspatial state relevant to the sub-model. The modeller defines the number of these variables, and attributes meaning to them. All state changes caused by the sub-model are specified as explicit assignments made to one of these declared variables.

5.1 Variable Declarations

A landscape event or agent can predicate its behaviour on the global variables, constants and raster layers that define the landscape state. In addition, an event can define and operate on a set of dynamic variables that are used to control the sub-model behaviour. Dynamic variables are assigned a scope based on the context in which they are available (e.g., within event instance, within a cluster, etc.) and are created and destroyed automatically by SELES. The dynamic variables available in landscape events and agents differ, and so are described in sections 6 and 7 below. The declaration section of a landscape event or agent consists of a series of pairs of the form:

variable type: variable name.

The following types of variables can be defined in a landscape event:

(a) Spatial layers define raster layers that are referenced by the landscape event.

(b) Global variables and constants define aspatial values that are referenced by the landscape event. These generally define some large-scale state information and may by accessed any time, by any event. For example, a global variable called WindDirection might store the prevailing wind direction. A Wind event might be employed to change the WindDirection during the simulation, whereas events called Fire and WindThrow might use the WindDirection to influence their behaviour. In addition, global variables can appear on the user interface to act as adjustable parameters for the scenario.

(c) Output and display variables define variables that will be output to record files or displayed on the screen during a simulation. Their use in properties is restricted to expressions that create a record of a simulation. Output variable declarations also specify the filename to which output records are to be stored.

(d) Dynamic variables: specific to landscape events or agents.

Spatial layers and global variables are external to all landscape events and agents in a scenario (they are part of the initial conditions of the scenario and have a global scope. The other variables are internal to a specific landscape event/agent and are created when appropriate for their scope.

There are two other types of variables are do not appear in the definitions section. System variables are system-defined variables, including the current simulation time (Time), the end time of the simulation (EndTime), the current run number (Run) and current spatial location (Location). Any variable that is referred to, but is not defined is assumed to be a local variable. Local variables have a very limited scope that is generally limited to the immediately subsequent assignments or main expression (see next subsection).

5.2 Landscape Event and Agent Properties

A landscape event or agent is constructed from a number of properties (e.g. for landscape events, Table 2). Although each property has a unique purpose, they are all constructed using the same general structure. We first provide an overview of this general format, and defer details of how properties are constructed until sections 6-8. Note that the modeller need only specify those properties relevant to the current landscape event or agent, since properties have a well-defined default. Each SELES event/agent property consists of the following parts:

Preliminary assignment expressions

Main expression

Consequent assignment expressions

The main expression is the only part that is required, and it is an expression that defines the value of the property. This value characterizes the property, as described in Table 2 for events and Table 5 for agents. The assignment expressions allow state changes to be associated with a property. Each assignment is a statement of the form: variable = expression. Section 8 describes expressions in detail.

Preliminary assignments are normally used to initialize part of the state-space for the main expression, whereas significant state changes are generally made with consequent assignments. Each property has an operating scope that defines the set of variables that can be referred to in the expressions, and the spatial locations at which the expressions are evaluated (Table 4). Preliminary assignments are evaluated immediately before the main expression, at all cells in this scope. One effect of evaluating the main expression is to modify the scope. The consequent assignments are evaluated after the main expression at cells in the consequent scope. For example, a FireSize cluster variable may be declared as part of a Fire event to control the number of cells to which a particular instance of Fire will spread. The consequent assignment FireSize = normal(=200,=50) in the Event Number of Clusters property will assign a random FireSize to any new cluster. In Transitions, the main expression FireSize > 0 will only allow an instance of Fire to spread while FireSize is positive. The consequent assignment FireSize = FireSize – 1 in the Transitions property will record the fact that a cell has burned. Thus, Fires will spread until they burn FireSize cells and then extinguish. The scopes and default for each property are defined (Table 4 for events and Table 6 for agents) and further described later in this document.
5.3 Expressions in Events and Agents

The expressions of the main expression of properties and the right-hand side of assignment expressions form the heart of the SELES modelling language. Expressions can range from simple constant values to complex expressions, can be deterministic or stochastic, continuous or discrete, computed at a single cell or over a neighbourhood of cells, etc. We refrain from delving into details on the syntax and focus on the general structure of the language. See section 8for a description of the expressions supported by SELES as well as the precise syntax to build expressions. The following describes some of the expressions available in the language:

(a) Constants: simply return a constant value

(b) Distributions: draw values from probability distributions such as normal, Weibull, negative exponential, etc. For example, an expression that specifies a normal distribution with a mean of 20.0 and a standard deviation of 5.0 will return a value drawn from this distribution each time it is invoked. The value such an expression returns is not deterministic, and may be different each time it is evaluated. This is one way in which stochasticity can be introduced into landscape events. For example, for a fire event, one could specify a normally distributed return time with a mean of 10 years and a standard deviation or 2 years, or a negative exponential distribution of fire size with a mean of 100ha.

(c) Continuous functions: evaluate a function f(x) for some variable x, which may be any of the variables described above. Examples include linear functions, exponential and trigonometric functions.

(d) Classified functions: define a mapping for categorical variables. Many rasters contain categorical data (e.g., community type or species), and are thus not amenable to ordinary continuous functions. A classified function, f(x), defines a separate resultant value or sub-function for each class x.

(e) Conditional functions: are defined as: if (expression1) then (result1) else (result2).

(f) Composite functions: provide a means of combining multiple sub-functions into a more complex expression. Examples include summations, products and averages. A region function can be used to define a spatial region over which such a function is evaluated. For example, the maximum age of cells defined in the region can be computed with an aggregate function.

(g) Region functions: define spatial regions. These functions are unlike other functions in that they don't return a single value, but rather return a spatial area of the landscape. Their application is limited: (i) they are used to define the main expression of the Event Location and Spread Location properties, and (ii) they may be used in conjunction with a composite function as described above.
(h) Matrix functions: define operations on one-dimensional vectors and two-dimensional matrices.

(i) Set, list and graph functions: define operations on collection and linked structures.

Simulation scenarios built from a set of landscape events and agents automatically have a modular structure and so are easy to describe and verify. We recommend that modellers attempt to write an informal, but precise version of each sub-model early on in the model building process. Table 1 gives an example for the Fire event used as an example in some of the above sections. Each of the landscape events is a semi-independent model of a single process, and thus provides substantial opportunity for re-use. The SELES/NT modelling environment facilitates the building, coordination, execution, and visualization of simulation scenarios.

Table 1: Informal specification for a simple Fire event.

Layers required: ForestAge

Global variables: WindSpeed and WindDirection

Cluster variables: FireSize

ReturnTime = 5 years, on average, distributed as by negative exponential

ProbInit = zero in unforested cells, linearly increasing with ForestAge otherwise, with an average value of 0.001 in young forest and 0.01 in very old forest.

NumClusters =1 [only one fire per fire year]

FireSize = 200 cells, on average, distributed normally with std.dev. = 20

Transitions = if (FireSize > 0) [burn only if this fire still needs to be bigger]

FireSize = FireSize -1

ForestAge = 0

SpreadTime = some function of WindSpeed.

SpreadLocation = all 8 adjacent cells

SpreadProb = a probability of zero in WindDirection, and linearly increasing to a probability of one in the opposite direction.

5.4 Property and Expression Contexts

The spatial domain and the set of variables that can be referred to in an expression is called the context of the expression (see Table 4 for events and Table 6 for agents). Some properties (e.g. ReturnTime for events) have no spatial context (e.g., the spatial domain of ReturnTime is the landscape as a whole) and so cannot refer to cell or cluster variables and layers are referred to in their entirety. Expressions that have a cell level spatial context can refer to any of the variables. These expressions permit computation of a value for a specific location (i.e. at a cell or region of cells) based on the current state of that location (i.e. the value of the spatial state variables for that cell or region).

Put more formally:

let S = {s1 ,s2,...sn} be an n element vector containing the values of all state variables defined in the context of an expression in a SELES model

then a SELES Expression specifies a function: y = f(S)

If the expression has a spatial context, then each cell in the landscape will potentially have a unique value. In this case, we can think of the result of an expression as a “transient” raster layer, with the value of cell i,j equal to yi,j = f(Si,j). Thus, when a spatial expression is evaluated at a particular cell in the model, the function parameters take on the values of the state variables at that cell, and the result of the function is given the spatial location of that cell. Readers familiar with GIS will recognize a similarity between spatial SELES expressions and raster overlays. One difference is that while a GIS overlay generally produces a complete and durable raster layer, the value of a SELES spatial expression is transient -- it is only computed at the time which and for cells in which it is required, and is discarded when the operation is complete. There are other important differences. One is that the variables also include the global variables as well as dynamic variables defined in the landscape event/agent. Another is that SELES expressions may include random numbers drawn from some distribution each time the expression is evaluated, allowing stochastic operations rather than strictly deterministic functions.

Each property is evaluated in two contexts: the operating context and the consequent context. The former is the context in which the preliminary assignments and main expression are evaluated. It is essentially the “input context” for the property and is the result of previous interactions. As a result of evaluating the property, contexts are created, filtered or modified (e.g. as a consequence of specifying that 3 fires will ignite in a model called Fire, 3 active spatial contexts will be created to capture the point of ignition for the fire). These contexts are automatically managed by SELES, and differ for the various properties of events and agents.

6 Landscape Events
Landscape events are designed as a general tool to capture processes acting on a landscape. A Landscape Event (LSE) must define when and where a state change should occur along with the nature of that state change. A LSE is defined by properties that help to separate when and where the process being modelled affects the landscape, and what the nature of the effect is (Table 2). Each property, in turn, is defined by a set of assignments and expressions that are evaluated during the simulation to determine the action to be taken. Together, these properties form the LSE definition. Conceptually, the LSE definition is used to determine the time between instances of the event (ReturnTime property), the spatial locations in which the event should initiate (EventLocation, NumClusters, and ProbInit properties), and the rate and directions the event should spread out from the cell in which it initiated (Spread properties).

Table 2 SELES landscape event properties. Each property controls a specific aspect of an event’s behaviour.
Property Name
Purpose

Initial State

Defines the initial number of event instances at simulation startup.

Return Time
(when)
Defines the interval of time between successive instances of the event on the landscape. This property represents the time-step for the event, which may be fixed or variable.

Event Location

(where possible)
Defines the set of cells in which the event can potentially initiate. By default this is the whole map, although this property can be used restrict the occurrence of an event to a particular spatial region, or a particular type of landscape element.

Number of Clusters

(how many)
Defines the number of cells in which the event will initiate. This property works in conjunction with the “Probability of Initiation” to select the cells in which the event will initiate (see Table 3).

Probability

 of Initiation

(where most likely)
Defines the relative or absolute probability that the event will initiate in a particular cell. By default each cell has an equal probability of initiation (i.e., the landscape is homogeneous with respect to the occurrence of the event), but this property provides an opportunity for the existing landscape pattern to affect the spatial distribution of the process.

Transitions

(what happens)
Defines whether the event actually occurs in the cell. This property allows a subtle difference to be made between the initiation of an event in a cell and its establishment. Although state changes can occur in any property, this is the logical place to determine if the event should cause a state change and what that state change should be. This property also determines whether or not the event will spread from the current cell.

Spread Time
Used in spreading events to define the interval of time required for an event to spread from the current cells to its neighbours.

Spread Location
Used in spreading events to define the set of cells to which an event can potentially spread from the current cell. This property is analogous to the “Event Location”, except that it only controls the spreading of events. The default is to spread only to a cell’s cardinal neighbours.

Number of Spread Recipients
Used in spreading events to define the number of cells an event should spread to from the current cell. This property is analogous to the “Number of Clusters”, except that it only controls the spreading of events. It works in conjunction with the “Probability of Spread”.

 Probability of Spread
Used in spreading events to define the absolute or relative probability that the event spreads to a particular cell. This property is analogous to the “Probability of Initiation”, except that it only controls the spreading of events.

At the beginning of a simulation, the first instance of an event is scheduled based on ReturnTime. For continuous processes, this is simply the time step used to discretely model state changes. For example, succession is often modelled annually, which would correspond to a ReturnTime of one year for an AnnualGrowth LSE. Alternatively, for processes that occur periodically, the ReturnTime is the interval between successive occurrences of the event. For example, a disturbance agent, such as a wind storm, may occur three times a year on average -- this would correspond to a ReturnTime defined by some distribution with a mean of 122 days for a WindStorm LSE.

When an event is processed, zero or more cells are initiated in the EventLocation. This region defines the universe of possible locations for initiation, of which some subset will actually have events initiated in them, based on the other initiation properties. This allows identification of the set of cells in which an event can potentially initiate.

Probability of Initiation (ProbInit) and Number of Clusters (NumClusters) together specify the cells in which events will initiate (see Table 3). Many types of processes are sensitive to the underlying spatial structure of the landscape. In these cases, the probability that an event will occur at a specific spatial location is conditional on the properties, or state, of that location. ProbInit allows you to specify either an absolute or a relative probability of the event occurring in any model cell, as a function of the cell state. That is, given that the event is going to occur somewhere in the model, what is the probability that it will occur at each spatial location (i.e. in each cell in the EventLocation). If NumClusters is defined, then it specifies the number of cells in which to initiate the event. These locations may be drawn purely at random, or may be dependent on the relative probability for each location, as defined by ProbInit. If NumClusters is not defined, then each cell in EventLocation is tested independently for initiation using ProbInit as an absolute probability. Table 3 illustrates the four possible combinations of ProbInit and NumClusters, along with the behaviour invoked when each of these combinations is used.

Table 3 Relationship between ProbInit and NumClusters properties. These two properties can be used alone or in conjunction to specify where an event will occur.

For each cell that initiates, a new active cell and cluster are created. The value of Transitions then determines whether or not a transition occurs. Usually, the main state transitions for the event are defined in this property. This property determines if an event should proceed (i.e. occur) in a cell and, if so, what should happen as a result of that event. This property is also used to determine if a spreading event will actually spread. If the event does occur, it will spread, whereas if the event does not occur, the active cell simply terminates without spreading.

The SpreadTime property specifies if and when an event will spread from the current cell to neighbouring cells. This is analogous to the ReturnTime property above, except that SpreadTime is computed for a specific location – the current location. If specified, this gives the number of time units in the future to schedule spreading from the current cell to the SpreadLocation cells. If not specified, then the event will not spread.

When a cell attempts to spread, SpreadLocation defines the set of potential cells to which spread may occur, analogously to EventLocation. Probability of Spread (SpreadProb) and Number of Spread Recipients (NumRecipients) select the set of cells to initiate via spreading, and operate analogous to ProbInit and NumClusters. The primary difference is that spreading has a source cell whereas event initiation does not. If NumRecipients is defined, then it specifies the number of cells to which a cell may spread. The relative probability of spreading to a cell is given by SpreadProb. If NumRecipients is not defined, then each cell in SpreadLocation is tested independently for initiation using SpreadProb as an absolute probability (see Table 3).

Note that we have not described how the actual changes to the landscape are to be specified. The properties describe the behaviour of an event as it starts in a landscape, spreads across and is finally extinguished.

6.1 Landscape Event Dynamic Variables and Contexts

The dynamic variables specific to landscape events are as follows:

(a) Event variables define values that apply to individual active instances of an event. For example, a Fire event might declare an event variable called FireSize that is used to store the size for each recurrence fire in the landscape. Thus, each instance of Fire can have a different size.

(b) Cluster variables define variables that apply to individual active clusters of an event. For example, if FireSize is a cluster variable, then it applies to a single cluster, whereas if FireSize is an event variable, then it applies to all clusters created by one instance of a fire event.

(c) Cell variables define variables associated with individual cells in which the event instance is currently active. For example, an event called Fire may declare a cell variable called Intensity to store the magnitude of the fire at each cell.

When an event creates a new cluster, any cluster variables declared for the event will be created. The value of an event variable will be the same for all clusters created by the event, but each cluster will have a unique set of cluster variables. Each cell to which a cluster spreads will refer to one set of cluster variables, and when the last cell of the cluster is extinguished, this set of variables will be removed from the system. Thus, the dynamic state is hierarchically organized as shown in Figure 4, where an active event has a set of active clusters, each of which in turn has a set of active cells.

Figure 4. The hierarchical structure of the dynamic state. Each active event has a single set of event variables, and one or more active clusters. Each active cluster has a single set of cluster variables, and one or more active cells. Each active cell has a set of cell variables.

The allocation and destruction of all dynamic variables is managed by SELES and is transparent to the modeller. Modellers simply need to declare variables at the appropriate event, cluster or cell scope levels. This hierarchical structure is important because lower order entities of the simulation (e.g., cell level) may need to act semi-independently, but may also need to be coordinated by the higher order entities (e.g., cluster, event, and global levels).

Table 4 shows the default values, and operating and consequent contexts for landscape events.

Table 4 Value and default for main expression, and context of landscape event properties.
Property Name
Value of Main Expression
Default
Operating Context
Consequent Context

Initial State
A single integer
1
Global
Global

Return Time
A single floating point value
0.0 (event occurs once at time 0)
Global
Global

Event Location

Spatial region
Whole map
Global
Region defined by result

Probability

 of Initiation
One floating point value per cell in Event Location
1.0
Event Location
(Spatial)
Subset of cells in in which the event initiates (Active)

Number of Clusters

A single integer value
Undefined (emergent)
Global
Same as above

Transitions
One Boolean value per initiating or spreading cell
TRUE
Initiating and spreading cells (Active)
Subset of cells in which the event “occurs”

Spread Time
A single floating point value
None (event doesn’t spread)
Active cell
Active cell

Spread Location
Spatial region
Cardinal neighbours
Active cell
Region defined by result (Recipient)

Probability of Spread
One floating point value per cell in Spread Location
1.0
Spread Location (Recipient)
Subset of cells in to which the event spreads (Active & Recipient)

Number of Spread Recipients
A single integer value
Undefined (emergent)
Active cell
Same as above

6.2 Instantiation and Spread of a SELES Landscape Event

It is important to clarify the difference between the definition of a LSE and an instance of a LSE. A LSE definition is composed only of the assignments and expressions defined for the properties described in Tables 1 and 3, and detailed more formally below. Instances of this definition are what get scheduled on the event queue during a simulation to occur at some time in the future. When a LSE instance is taken off the queue and executed, it initially has no spatial location. The first step taken when processing an event instance is initiation, in which a set of clusters or cells is selected according to the EventLocation, NumClusters and ProbInit properties. After initiation, the LSE instance schedules a new instance, with the same LSE definition, to occur at some later time according to the ReturnTime property. A LSE instance remains active as long as one of its clusters is active. A cluster remains active as long as its initiating cell, or a cell that was spread to from this initiating cell, is active. A cell is active if it has scheduled spreading on the event queue or if it is currently being processed. A cell is terminated after it has finished spreading, but this may result in the activation of other cells.

An event instance is basically a dynamic activation of the LSE definition with two minor differences:

1. through initiation of clusters and spread, it acquires specific spatial locations at which it affects the landscape; and

2. it has no ReturnTime, it is initiates clusters at the current clock time. It has a duration while active cells spread across the landscape, but it terminates when the last active cell, and hence the last active cluster terminates. The ReturnTime is used to schedule a new instance of an event.

The distinction between and an LSE definition and its instances is important since more than one event instance of a single LSE type (same definition) may be active at one time. Each instance has its own internal state of event variables, just as each active cluster has its own set of cluster variables and each active cell has its own set of cell variables. Note that the identity of active cells is determined by the source of their initiation. Thus, it is possible for the same spatial cell to be simultaneously active with more than one LSE instance. For example, this may occur if a fire event spreads to the same cell from two neighbouring cells. If such a possibility is undesirable, additional state should be included to facilitate communication between active cells within a single spatial location (e.g., using an event variable or a spatial layer that records the activity of an event).

For clarity and brevity in the rest of the document, an LSE definition or instance will simply be referred to as a Landscape Event, or LSE for short. An active cell within an event instance will be referred to as an active cell, because it is an event that is associated with a particular cell. In general, a LSE is a recurring phenomenon on the landscape, with no specific spatial location, while an active cell is a phenomenon that occurs at a specific time and place, with the ability to propagate itself by spreading.

It is also important to understand when and how an active cell spreads. An active cell may spread only if it occurs in its own cell. The Transitions property is used to determine if an active cell actually occurs in each particular cell where the event was initiated. If the active cell did not occur, then it terminates. If it did occur, the active cell schedules spreading to occur at some future time as determined by the SpreadTime property. When spreading is processed, a number of new active cells are created and propagated to neighbouring cells. These new active cells are within the same active cluster and event instance as the original. Note that we draw a clear distinction between the initiation of an event and the occurrence of an event. An event is initiated when the event instance is "dropped" into the cell (via a new cluster, or via spread from some neighbouring cell). An event occurs when the Transitions property is evaluated as True after initiation. For example, a lightning strike may initiate a fire in the cell it hits, but whether or not a fire actually occurs in that cell might be determined as a function of current fuel and weather conditions.

6.3 Landscape Event Property Details

This section gives a more detailed description of the duty or behaviour of each of the LSE properties listed above. In these descriptions, the following notation is defined for brevity:

· Q represents the DES priority event queue described above (see Figure 2).

· S represents the set of n variables available in the current context. For spatial contexts, this additionally includes a specific spatial location, where Si,j represents a vector of length n containing the values of the state variable at cell i,j.

Each LSE property is described by the following characteristics:

Result: Specifies the object created or modified by this property.

Default: Specifies the default behaviour if the property is not defined.

Context: Specifies the precise state context of the property. This determines the set of state variables, S, that can be referred to in an expression. A context can either be global, spatial, active, recipient or active & recipien. A global context includes global, “whole” layer and event variables as well as the Time system variable. A reference to a layer in a global context applies to every cell in the layer, which we call a “whole” layer reference. A spatial context includes global, layer (at a specific location), and event variables, as well as the Time and Location system variables. An active context is a spatial context with an active cell, and hence also includes cluster and cell variables. A recipient context is a spatial context for a potential recipient of spread, and so includes the source (spreading) cell, location and layer variables (which are accessed using the prefix SOURCE). Finally, an active recipient context combines an active context with a recipient context. Note that the preliminary assignments and main expression share one context (the operating context) while the consequent assignments may have a different context (the consequent context).

Description: Specification of the property’s function.

6.3.1 InitialState

Determine the number of event instances to create at simulation startup

Result: A set of event instances.

Default: One instance

Context: Preliminary Assignments (ISpre): global

Main Expression (is): global

Consequent Assignments (IScon): global

The main expression is any valid global expression, is(S), defining the number of event instances to create at the beginning of a simulation.

Description: This property is useful to set up initial conditions local to an event, and to create multiple instances of an event at startup. The preliminary assignments are evaluated once, while the consequent assignments are evaluated for each instance created. Note that since there is no instance prior to this property, event variables are not available in the preliminary context.

6.3.2 ReturnTime

Determines the interval between event instances, and schedules new event instances.

Result: Update the event queue Q and create a LSE instance.

Default: Schedule the event to occur exactly once at simulation startup.

Context: Preliminary Assignments (RTpre): global

Main Expression (rt): global

Consequent Assignments (RTcon): global

The main expression is any valid global expression, rt(S), defining the time elapsed (in time units) between successive occurrences of the event.

Description: At simulation startup, an event instance is created and the Preliminary Assignments and the Main Expression, rt(S), for the event are evaluated. The initial values for event variables are set to zero. The event instance is scheduled to occur at rt(S) number of time units in the future.

When a LSE instance is taken off the queue, the Consequent Assignments for this event are evaluated. Then EventLocation is invoked to process event initiation. Once the event instance completes all of its activities, a new event instance is created and the Preliminary Assignments and the Main Expression, rt(S), are evaluated. The initial values of the new instance are set to the values of the previous instance. The new instance is scheduled to occur at rt(S) number of time units in the future.

6.3.3 EventLocation

Determine the set of potential cells in which an event can initiate.

Result: A set of spatial locations for potential initiation of an event (InitRegion)

Default: Every cell in the landscape.

Context: Preliminary Assignments (ELpre): global

Main Expression (el): global

Consequent Assignments (ELcon): spatial

The main expression is any valid global expression, el(S), defining the region of cells in the landscape in which the event may initiate. Although the consequent assignments are spatial, they can only refer to layer variables and not cell variables, since at this point, active cells have not yet been created by the event instance.

Description: The set of cells returned by this function defines the landscape as seen during the initiation of the event via ProbInit and NumClusters. Initiation only applies to this set of cells. The Preliminary Assignments are evaluated once before the Main Expression, while the Consequent Assignments are evaluated in each of the cells in the event region.

6.3.4 ProbInit

Determine the probability (relative or absolute) that an event will initiate in a particular cell.

Result: Transient “raster layer” for cells in the initiation region InitRegion with floating point values indicating the potential of each cell to initiate with the event (InitProb).

Default: Every cell in the initiation region has a potential value of 1.0.

Context: Preliminary Assignments (PIpre): spatial

Main Expression (pi): spatial

Consequent Assignments (PIcon): active

The main expression is any valid spatial expression, pi(S), defining the probability, normally between zero and one, of an event initiating in a model cell. Although the preliminary assignments and main expression are spatial, they can only refer to layer variables and not cell variables, since at this point, active cells have not yet been created by the event instance. The consequent assignments can refer to cell and cluster variables.

Informal Specification: After determining the initiation location, the Preliminary Assignments and the Main Expression, pi(S), are evaluated for each cell in the initiation region. The Consequent Assignments are only evaluated in those cells in which the event actually initiates – see NumClusters below.

6.3.5 NumClusters

Determine the number of clusters for an event instance (i.e. number of cells to initiate)

Result: A set of active cells, derived from the initiation region InitRegion and probability of initiation layer InitProb for the LSE.

Default: Every cell i,j in InitRegion has an absolute probability of initiating equal to InitProbi,j. (Thus, the actual number of clusters, or initiating cells, is emergent.)

Context: Preliminary Assignments (NCpre): global

Main Expression (nc): global

Consequent Assignments (NCcon): active

The main expression is any valid global expression, nc(S), defining the number of cells in initiation region in which the event is to initiate.

Description: Once ProbInit has produced the “map” InitProb of potential sites, and their relative probabilities, NumClusters is evaluated to determine the actual number of cells in which to initiate the event. The cells in which the event is initiated (via Transitions) are selected stochastically from the potential sites based on the probabilities in InitProb (i.e. the probabilities are relative). For cells that initiate, the Consequent Assignments for both NumClusters and ProbInit are evaluated.

If NumClusters is not defined, then cells are selected for initiation independently based on InitProb (i.e. the probabilities are absolute). For cells that initiate, the Consequent Assignments for ProbInit are evaluated.

6.3.6 Transitions

Determine if the event occurs in the given cell.
Result: An active cell E.

Default: The event occurs.

Context: Preliminary Assignments (TRpre): active

Main Expression (tr): active

Consequent Assignments (TRcon): active

The main expression is any valid spatial expression tr(S), defining a boolean value.

Description: When an active cell has initiated in a cell, either through event initiation or spreading, the Preliminary Assignments and the Main Expression, tr(S), are evaluated for the cell. If the result of tr(S) is TRUE (non-zero), then the active cell occurs in the cell. The Consequent Assignments are only evaluated, and spreading is only attempted, if the event occurs in the cell. For spreading events, SpreadTime is invoked to schedule spreading.

6.3.7 SpreadTime

Determines the time it takes between initiation of an event in a cell and spreading of the event to neighbouring cells, and schedules the active cell to spread at this time in the future.

Result: Updates the event queue Q

Default: Event does not spread.
Context: Preliminary Assignments (STpre): active

Main Expression (st): active

Consequent Assignments (STcon): active

The main expression is any valid spatial expression st(S), defining the time elapsed (in time units) between an event occurring in a cell and when the event spreads from the cell to neighbouring cells. If st(S) is –1, then spreading is high priority “instant” (same as a timestep of 0, but spreading will occur before all other “non-instant” events at the current time. If st(S) is –2, then spreading is “immediate” (spreading will occur without scheduling on the queue (Note: this facility must be used with caution and only in cases that have well-defined termination of the immediate mode. Poorly constructed models that permit immediate spreading repeatedly to the same cell can cause infinite loops.).

Description: When an active cell occurs in a cell, the Preliminary Assignments are evaluated. The Main Expression is then evaluated to determine the length of time required for the event to spread to neighbouring cells. Spread from this active cell is scheduled on the event queue to occur at st(S) number of time units in the future. After the spreading is processed via SpreadLocation, the Consequent Assignments are evaluated and the active cell terminates.

6.3.8 SpreadLocation

Determine the set of potential cells in which an event can initiate through spread from an active cell E.

Result: A set of spatial locations for potential spread of an event (SpreadRegion)

Default: The four cardinal neighbours of E (north, south, east and west)

Context: Preliminary Assignments (SLpre): active

Main Expression (sl): active

Consequent Assignments (SLcon): recipient

The main expression is any valid spatial expression, sl(S), defining the region of cells in the landscape to which the active cell E may spread. Although the consequent assignments are spatial, they can only refer to layer variables and not cell variables, since at this point the new active cell has not yet been created by the spreading cell. However, the source cell variables (for the spreading active cell E) can be referenced.

Description: The set of cells returned by this function defines the landscape as seen during the spread of the active cell via SpreadProb and NumRecipients. Spreading only applies to this set of cells. The Preliminary Assignments are evaluated once before the Main Expression, while the Consequent Assignments are evaluated in each of the cells in the event region.

6.3.9 SpreadProb

Determine the probability (relative or absolute) that an active cell E will spread to a particular cell.

Result: Transient “raster layer” for cells in the spread region SpreadRegion with floating point values indicating the potential of each cell to initiate with the event (SpreadProb).

Default: Every cell in the spread region has a potential value of 1.0.

Context: Preliminary Assignments (SPpre): recipient

Main Expression (sp): recipient

Consequent Assignments (SPcon): active & recipient

The main expression is any valid spread expression, sp(S), defining the probability, normally between zero and one, of an event initiating in a model cell via spreading from active cell E. Although the preliminary assignments and main expression are spatial, they can only refer to layer variables and not cell variables, since at this point the new active cell has not yet been created by the spreading cell. However, the source cell variables (for active cell E) can be referenced. The consequent assignments can refer to cell variables.

Description: After determining the spread location, the Preliminary Assignments and the Main Expression, sp(S), are evaluated for each cell in the spread region. The Consequent Assignments are only evaluated in those cells to which the active cell actually spreads – see NumRecipients below.

6.3.10 NumRecipients

Determine the number of cells to spread to.

Result: A set of active cells, derived from the spread region SpreadRegion and probability of spread layer SpreadProb from the active cell E for event instance LSE.

Default: Every cell i,j in SpreadRegion has an absolute probability of spreading equal to SpreadProbi,j. (Thus, the actual number of cells spread to is emergent.)

Context: Preliminary Assignments (NRpre): active

Main Expression (nr): active

Consequent Assignments (NRcon): active & recipient

The main expression is any valid spatial expression, nr(S), defining the number of cells to which to spread.

Description: Once SpreadProb has produced the “map” SpreadProb of potential sites, and their relative probabilities, SpreadRecipients is evaluated to determine the actual number of cells to which the active cell should spread. The actual cells in which the event is initiated via spread are selected stochastically from the potential sites based on the probabilities in SpreadProb. For cells that initiate via spread, the consequent assignments for both SpreadRecipients and SpreadProb are evaluated. Once a cell has been spread to, initiation of the new active cell is handled by invoking Transitions, as for NumClusters, thereby cycling the event loop.

If NumRecipients is not defined, then cells are selected for spread independently based on SpreadProb (i.e. the probabilities are absolute). For cells that initiate, the Consequent Assignments for SpreadProb are evaluated.

7 SELES Landscape Agents

Landscape Agents (LSA) has a similar structure to landscape events, but differ in the semantics of the properties. However, the properties for agents focus on key attributes for creating individual-based models. Table 5 describes the purpose and meaning of each event property. The fundamental difference between agent-based and event-based perspectives is that events come and go, but agents are persistent. That is, an agent has a clear identity that is maintained as it moves around the landscape, whereas when an active cell event spreads to another cell (even to the same cell), it creates a new active cell event.

A LSA must define the number and location of agents, the rate at which populations are processed, and agent behaviours such as moving, survival and reproduction. Conceptually, individual-agents are clustered into “groups” which are then clustered into “populations”. A LSA is defined by properties that help to separate the agent behaviour from its effects on the landscape. Conceptually, the LSA definition is used to determine the time between instances of population creation (ImmigrationTime property), the spatial locations in which the agents should initiate (AgentLocation, NumPopulations, NumGroups, NumAgents and ProbInit properties), the time interval between population processing steps (PopulationTime property), and individual agent behaviour for movement, survival and reproduction (MoveLocation, MoveProb, NumOffsopring, and Transitions properties).

At the beginning of a simulation, the first populations are created based on NumPopulations. For each population, a number of groups are created based on NumGroups. Then for each group a number of agents are created based on NumAgents, each of which must be placed in a cell. The AgentLocation property is a region that defines the universe of possible locations for initiation. Probability of Initiation (ProbInit) specifies the relative probability of selecting a cell for placing an agent. More than one agent can be within a given cell, and the default for ProbInit is to select with replacement (i.e. each agent selects a cell independently from other agents).

During each time step, agents have the opportunity to move, survive and reproduce. The time interval between these steps is specified by PopulationTime. Unlike event spread, where SpreadTimestep is unique for each active cell, this time step is the same for all agents within a population. During each iteration, every agent is processed in turn. The first step is to test whether the agent survives to move and/or reproduce, which is specified by Transitions. If this evaluates to TRUE then the agent survives otherwise the agent is removed from the system.

During each step, agents select a cell to move to (which may include the current cell they are in). The potential set of locations is specified with MoveLocation and the relative probability of selecting any one of these is specified by MoveProb. Note that unlike events, since agents retain identity, they can only move to a single cell, whereas events can spread to multiple cells.

After moving agents can create offspring using NumOffspring that start in the same population/group and cell as the parent.

Table 5 SELES landscape agent properties. Each property controls a specific aspect of an agent’s behaviour.
Property Name
Purpose

Initial State

Defines the initial number of event instances at simulation startup.

Immigration Time

(time step)
Defines the interval of time between creation of new populations in the system. By default this evaluates to zero, indicating a single population creation event at simulation start-up.

Agent Location

(where possible to start)
Defines the set of cells in which agents can potentially initiate. By default this is the whole map, although this property can be used restrict agents placement to a particular spatial region, or a particular type of landscape element.

Number of Populations

Defines the number of populations to create during immigrations. By default there is just one population.

Number of Groups

Defines the number of groups with which to initiate a given population. By default there is just one group per population.

Number of Agents

Defines the number of agents with which to initiate a given group.

Probability

 of Initiation

(where most likely)
Defines the relative probability that an agent will initiate in a particular cell. By default each cell has an equal probability of initiation (i.e., the landscape is homogeneous with respect to the placement), but this property provides an opportunity for the existing landscape pattern to affect the initial spatial distribution of agents. By default, selection is with replacement (i.e. independt selection of cells for each agent).

Transitions

(survival)
Processed for each agent each timestep. Defines whether the agent survives to the next step. If this evaluates to FALSE, the agent is removed from the system.

Population Time
Defines the interval of time between population updates. During each update, all groups and individuals within a population are processed.

Move Location
Defines the set of cells to which an agent can potentially move from the current cell. The default is to allow movement to only to a cell’s cardinal neighbours. Since agents retain identity, exactly one location is selected.

Move Probability
Defines the relative probability of an agent selecting a cell from the MoveLocation to move to. The default is equal probability

 Number of Offspring
Defines the number of new agents to create by a given agent within the same group and population and at the same location. The default is none.

As with landscape events, the properties describe the behaviour of agents as they start and move around in a landscape. Agents will continue moving until they die or the end of the simulation is reached.

Note that agents may disappear from the system for two reasons: (i) they explicitly experience mortality according to the Transitions property; or (ii) there is nowhere to move, including staying in the same place. The latter will occur if the MoveLocation is empty or if MoveProb is zero for all cells in the MoveLocation. This effect is consistent with the model specification since in these cases, the model is stating that there is nowhere the agent can move (not even staying still). In general, care should be taken to avoid this situation, in particular if the model requires tracking the number of active agents. A simple way to do this is the ensure that the current cell is always part of the MoveLocation and that it has a non-zero probability (even if very small) of being selected).

7.1 Landscape Agent Dynamic Variables and Contexts

The dynamic variables specific to landscape agents are as follows:

(a) Population variables define values that apply to each population. For example, an Elk agent model might declare a population variable called NumBulls that is used to store the number of mature males in the population.

(b) Group variables define variables that apply to individual groups within a population.

(c) Agent variables define variables associated with individual agents. For example, an agent model called Elk may declare an agent variable called CurrDirection to store the current direction the agent is moving.

The hierarchy for agents is analogous to that of events (Figure 4). with each population having a set of active groups, and each group having a set of active agents.

Table 6 shows the default values, and operating and consequent contexts for agents.

Table 6 Value and default for main expression, and context of landscape agent properties.
Property Name
Value of Main Expression
Default
Operating Context
Consequent Context

Initial State
A single integer
1
Global
Global

Immigration Time
A single floating point value
0.0 (once at time 0)
Global
Global

Number of Populations

A single integer value
1
Global
Population

Number of Groups

A single integer value
1
Population
Group

Number of Agents

A single integer value
1
Group
Agent

Agent Location

Spatial region
Whole map
Global
Region defined by result

Probability

 of Initiation
One floating point value per cell in Agent Location
1.0
Agent Location
(Spatial)
Agent

Transitions
One Boolean value per agent each steo
TRUE
Agent
Subset of agents that “survive”

Population Time
A single floating point value
1
Population
Population

Move Location
Spatial region
Cardinal neighbours
Agent
Region defined by result

Probability of Movement
One floating point value per cell in Move Location
1.0
Agent
Agent

Number of Offspring
A single integer value
0
Agent
Agents created as offspring (Agent and Source Agent)

7.2 Landscape Agent Property Details

This section gives a more detailed description of the duty or behaviour of each of the LSA properties listed above. The same notation is used here as in section 5.3 for landscape events.

7.2.1 InitialState

Determine the number of immigration instances to create at simulation startup

Result: A set of immigration instances.

Default: One immigration instance

Context: Preliminary Assignments (ISpre): global

Main Expression (is): global

Consequent Assignments (IScon): global

The main expression is any valid global expression, is(S), defining the number of immigration instances to create at the beginning of a simulation.

Description: This property is useful to set up initial conditions local to an event, and to create multiple immigration instances of an event at startup. The preliminary assignments are evaluated once, while the consequent assignments are evaluated for each instance created. Note that since there is no instance prior to this property, population variables are not available in the preliminary context.

7.2.2 ImmigrationTime

Determines the interval between instances of population creation, and schedules new immigration instances.

Result: Update the event queue Q and create a LSA instance.

Default: Schedule the agent model to occur exactly once at simulation startup.

Context: Preliminary Assignments (RTpre): global

Main Expression (rt): global

Consequent Assignments (RTcon): global

The main expression is any valid global expression, rt(S), defining the time elapsed (in time units) between successive occurrences.

Description: At simulation startup, Preliminary Assignments and the Main Expression, rt(S), are evaluated. The next instance is scheduled to occur at rt(S) number of time units in the future.

When a LSA instance is taken off the queue, its Consequent Assignments are evaluated. Then NumPopulations is invoked to process population initiation. Once the instance completes all of its activities, a new instance is created and the Preliminary Assignments and the Main Expression, rt(S), are evaluated. The new instance is scheduled to occur at rt(S) number of time units in the future.

7.2.3 NumPopulations

Determine the number of populations to create for an immigration instance

Result: A set of new agent populations

Default: One population

Context: Preliminary Assignments (NPpre): global

Main Expression (np): global

Consequent Assignments (NPcon): population

The main expression is any valid global expression, np(S), defining the number of populations to create for this instance.

Description: Each return of the LSE, this property is evaluated and the specified number of populations is created. For each population, NumGroups is evaluated to specify the number of groups within the population to create.

If NumPopulations is not defined, then a single population is created.
7.2.4 NumGroups

Determine the number of groups to create for a new population

Result: A set of new agent sub-population goups

Default: One group

Context: Preliminary Assignments (NGpre): population

Main Expression (ng): population

Consequent Assignments (NGcon): group

The main expression is any valid population expression, gp(S), defining the number of groups to create for this new population.

Description: After each new population created this property is evaluated and the specified number of groups within the population is created. For each group, NumAgents is evaluated to specify the number of agents within the group to create.

If NumGroups is not defined, then a single group within each new population is created.
7.2.5 AgentLocation

Determine the set of potential cells in which a agent can initiate.

Result: A set of spatial locations for potential initiation of an agent (InitRegion)

Default: Every cell in the landscape.

Context: Preliminary Assignments (ALpre): global

Main Expression (al): global

Consequent Assignments (ALcon): spatial

The main expression is any valid global expression, al(S), defining the region of cells in the landscape in which agents may initiate. Although the consequent assignments are spatial, they can only refer to layer variables and not agent variables, since at this point, new agents have not yet been created.

Description: The set of cells returned by this function defines the landscape as seen during the initiation of the event via ProbInit and NumAgents. Initiation only applies to this set of cells. The Preliminary Assignments are evaluated once before the Main Expression, while the Consequent Assignments are evaluated in each of the cells in the event region.

7.2.6 ProbInit

Determine the relative probability that an agent will initiate in a particular cell.

Result: Transient “raster layer” for cells in the initiation region InitRegion with floating point values indicating the potential of selecting each cell for an agent to initiate (InitProb).

Default: Every cell in the initiation region has a potential value of 1.0.

Context: Preliminary Assignments (PIpre): spatial

Main Expression (pi): spatial

Consequent Assignments (PIcon): agent

The main expression is any valid spatial expression, pi(S), defining the probability, normally between zero and one, of an agent initiating in a cell. Although the preliminary assignments and main expression are spatial, they can only refer to layer variables and not agent variables, since at this point, agents have not yet been created. The consequent assignments can refer to agent, group and population variables.

Informal Specification: After determining the initiation location, the Preliminary Assignments and the Main Expression, pi(S), are evaluated for each cell in the initiation region. The Consequent Assignments are only evaluated in those cells in which agents actually initiate – see NumAgents below.

7.2.7 NumAgents

Determine the number of agents to create for each new group

Result: A set of agents, each in a cell, the location of which is derived from the initiation region InitRegion and probability of initiation layer InitProb for the LSA.

Default: Every cell i,j in InitRegion has a relative probability of initiating equal to InitProbi,j. (Thus, the location of new agents is random)

Context: Preliminary Assignments (NApre): group

Main Expression (na): group

Consequent Assignments (NAcon): agent

The main expression is any valid group expression, na(S), defining the number of agents to create in the initiation region.

Description: Once ProbInit has produced the “map” InitProb of potential sites, and their relative probabilities, each agent selects a cell for initiation. By default this selection is independent (i.e. with replacement, where a more than one agent may be placed in the same cell). Selection without replacement is possible by adding the keywords WITHOUT REPLACEMENT following the ProbInit property name. The cells in which each agent is initiated (via Transitions) are selected stochastically from the potential sites based on the probabilities in InitProb (the probabilities are relative). After agents are placed, the Consequent Assignments for both NumAgents and ProbInit are evaluated.

7.2.8 Transitions

Determine if an agent survives.
Result: An agent E.

Default: The agent survives.

Context: Preliminary Assignments (TRpre): agent

Main Expression (tr): agent

Consequent Assignments (TRcon): agent

The main expression is any valid spatial expression tr(S), defining a boolean value.

Description: For each agent, ether after initiation or during the population update loop (after movement and reproduction), the Preliminary Assignments and the Main Expression, tr(S), are evaluated. If the result of tr(S) is TRUE (non-zero), then the agent survives. If the agent doesn’t survive, the agent is removed from the system. Otherwise the Consequent Assignments are evaluated, and the agent stays in the population pool until the next update step.

7.2.9 Population Time

Determines the time it between population update steps. On each iteration, all agents are processed to test for movement, reproduction and survival.

Result: Updates the event queue Q

Default: One time unit.
Context: Preliminary Assignments (PTpre): population

Main Expression (pt): population

Consequent Assignments (PTcon): population

The main expression is any valid population expression pt(S), defining the time elapsed (in time units) between each update iteration for the population.

Description: After a population initiates, the Preliminary Assignments are evaluated. The Main Expression is then evaluated to determine the length of time between update steps. The next population update step is scheduled on the event queue to occur at pt(S) number of time units in the future. At the start of a population update step, the Consequent Assignments are evaluated and population is updated, starting with the movement step for each agent.

7.2.10 MoveLocation

Determine the set of potential cells to which an agent A can move.

Result: A set of spatial locations for potential movement of an agent (MoveRegion)

Default: The four cardinal neighbours of A (north, south, east and west)

Context: Preliminary Assignments (MLpre): agent

Main Expression (ml): agent

Consequent Assignments (MLcon): agent

The main expression is any valid agent expression, ml(S), defining the region of cells in the landscape to which the agent A may move.

Description: The set of cells returned by this function defines the landscape as seen during the movement of an agent. The Preliminary Assignments are evaluated once before the Main Expression, while the Consequent Assignments are evaluated in each of the cells in the region.

7.2.11 MoveProb

Determine the relative probability that an agent A will move to a particular cell.

Result: Transient “raster layer” for cells in the move region MoveRegion with floating point values indicating the potential of each cell for selection by the agent (MoveProb).

Default: Every cell in the move region has a potential value of 1.0.

Context: Preliminary Assignments (MPpre): agent

Main Expression (mp): agent

Consequent Assignments (MPcon): agent

The main expression is any valid agent expression, mp(S), defining the probability, normally between zero and one, of an agent moving to a cell from its current locaiton.

Description: After determining the move region, the Preliminary Assignments and the Main Expression, ap(S), are evaluated for each cell in the move region. The Consequent Assignments are only evaluated in the single cell to which the agent actually moves. Note that if the move region is empty, or if no cell in the move region has a positive probability, then the agent has no cells to choose from, and so disappears from the system.

7.2.12 NumOffspring

Determine the number of offspring created by an agent.

Result: A set of agents created within the same group and population, and at the same location, as the parent agent.

Default: None

Context: Preliminary Assignments (NOpre): agent

Main Expression (no): agent

Consequent Assignments (NOcon): agent & recipient

The main expression is any valid spatial expression, no(S), defining the number of new agents to create by a given agents.

Description: After movement, each agent has the option to create offspring which are new agents within the same group, and at the same location as the parent. The new offspring are placed in the population pool until the next population update. After reproduction, the parent agent is assessed for survival (via Transitions).

8 Expression Language: Specifying Landscape Events and Cell Expressions

This section describes the syntax of the underlying SELES modelling language. There are two types of structures of interest to model builders: landscape events and agents are descriptions of some process acting on the landscape, while a cell expression is a specification of a related set of formulae, which are often evaluated in a spatial context (i.e., cell by cell). Cell expressions are used to specify the spatial relationships in site specific and statistical summary (value) models.

The following notational conventions are used in this guide:

1. Comments can generally be placed anywhere in a SELES file, surrounded by “/*” and “*/”. Line comments are specified with a “//”

2. Labels that are entirely upper case indicate keywords that should appear in the file as is. Labels that are not all upper case indicate structures defined in a subsection of the same name elsewhere in this section. Labels enclosed in “< >” indicate arbitrary strings. A pound sign (#) preceding a label indicates that a number should be specified. Labels that are in italic are optional.

3. Numbers include floating point or integer values, constant names and arithmetic expressions. For example, the following are valid number expressions: 2, 3.5 1/365.25, (5*-3)^4/6, MaxAge, and 1/NUMCELLS (where NUMCELLS is a built-in constant, as described later).

4. A superscripted asterisk (*) indicates potential repetition “zero or more times” while a superscripted plus sign (+) indicates repetition “one or more times” (i.e. at least one is required).

5. Punctuation, where shown, must be provided as is.

8.1 Landscape Events and Agents

The format of a landscape event is as follows:

LSEVENT: <event name>

Definitions

Property*
The format of a landscape agent is identical, except the keyword “LEVENT” is replaced by “LSAGENT”.

A property has the following form:

PropertyName

State-change*

PropertyName = Expression

State-change*

PropertyEndTag

If there are no state-changes associated with a property, then the enclosing name and end tag are optional. After the Definitions section, properties can be specified in any order - the last specification takes precedence. The available property names for events, and their end tags are as follows:

INITIALSTATE
ENDIS

RETURNTIME
ENDRT

EVENTLOCATION
ENDEL

NUMCLUSTERS
ENDNC

PROBINIT
ENDPI

TRANSITIONS
ENDTR

SPREADTIME
ENDST

SPREADLOCATION
ENDSL

NUMSPREADRECIPIENTS
ENDNR

SPREADPROB
ENDSP

 The available property names for agents, and their end tags are as follows:

INITIALSTATE
ENDIS

IMMIGRATIONTIME
ENDIM

AGENTLOCATION
ENDAL

NUMPOPULATIONS
ENDNP

NUMGROUPS
ENDNG

NUMAGENTS
ENDNA

PROBINIT
ENDPI

TRANSITIONS
ENDTR

POPULATIONTIME
ENDPT

MOVELOCATION
ENDML

MOVEPROB
ENDMP

NUMOFFSPRING
ENDNO

Notes:

1. The main expression of the EventLocation, SpreadLocation, AgentLocation and MoveLocation properties must be region functions. The decision expression in the region function may be used to exclude cells in this region. One can also specify for the region to wrap around the edges of the landscape (top to bottom and left to right), which is useful for combating edge effects in theoretical models. The main expression of all other properties cannot be regions.
2. If the value of SpreadTime is 0 or more, then spreading is processed normally via the event queue. If SpreadTime is –1, then spreading will occur instantaneously high-priority. That is, not only will spreading not consume any simulation time, it will also occur before any normal priority events scheduled to occur at the current time. Using this feature allows an event to process spreading before any other (normal priority) event. However, all high-priority events will be interleaved via the event queue. If the value of SpreadTime is -2, then spreading will occur immediately. That is, once an event initiates in a cell, it will spread before the event attempts to initiate in another cell. This behaviour is useful for modeling patch oriented processes such as some types of decision making (e.g. setting up planning areas or excluding small patches from harvestable forest) or patch-based succession. In these cases, we wish to process a patch starting at an initiating cell (defined by ProbInit, SpreadProb, and/or SpreadLocation) before attempting to initiate in another cell. During the processing of a patch, we can modify the state to prevent any other initiations in this patch.
8.2 Cell Expressions

Cell expressions are used to describe pattern and summary specification in site-specific and statistical summary models. Essentially, a cell expression sets up a context for evaluating a main expression and an associated set of state-changes. That is, it defines the variables that may be used to parameterize expressions (e.g. elevation, vegetation cover) that are specific to a given cell location. The general form of a cell expression is as follows:

CELLEXPR: <expression name>

Definitions

State-change*

Expression

State-change*

ENDCE
Note the expression name or both the colon and expression name following the CELLEXPR keyword is optional. The main expression defines the value of a cell expression. The first set of state-changes is evaluated before the main expression, and the second set after.

8.3 Definitions

The Definitions section is used to identify the spatial layers (maps) and global variables accessed by the event and to declare variables in the dynamic hierarchical state to be used by the event. Defined variables can be used in the expressions in the event properties or cell expression. Each variable has a "scope", which determines where it is valid to refer to the variable, and what spatial context the variable resides in. For example, a variable with global scope may be referred to in any expression and takes on a single value (aspatial), whereas a variable with spatial scope can only be used in expressions that refer to individual cells and potentially takes on a different value at each cell. Note that when a layer variable is referenced in one of the event property definitions, the variable takes on the value of layer at the active cell location.

DEFINITIONS

VariableDefinition+

ENDDEF

A VariableDefinition defines one or more variables of a given type, with the names separated by commas:

LAYER: <Layer Name>

LAYER(#NumSubLayers): <Multi-layer Name>

GLOBAL VARIABLE: <Variable Name>

(or: ASPATIAL <Var Name>)

GLOBAL VARIABLE(#NumElements): <Vector Variable Name>

OUTPUT VARIABLE: <Variable Name> = <Filename>

CONSTANT: <Label Name> = #Value

In addition to the above, landscape events may define:

EVENT VARIABLE: <Variable Name>

CLUSTER VARIABLE: <Variable Name>

CELL VARIABLE: <Variable Name>

In addition to the above, landscape agents may define:

POPULATION VARIABLE: <Variable Name>

GROUP VARIABLE: <Variable Name>

AGENT VARIABLE: <Variable Name>

Notes:

1. Layers and global variables are the external spatial and aspatial state variables provided by the user. Normally, they will be layers (i.e. rasters) or aspatial parameters or control variables. The other variables are part of the internal state managed by SELES.

2. Multi-layers are essentially two or more interleaved rasters. That is, in a multi-layer raster the values for sub-layers (channels) are stored sequentially at each cell. Multi-layer rasters cannot currently be created in SELES by loading a raster from a file. They can be created as layers without an initial state or via shared memory with an external application that provides the interleaved data.

3. Event variables are variables unique to each instance of an event (e.g. each fire initiation event may have an EventSize variable). Cluster variables are unique to each cluster of an event (e.g. each fire opening may have an OpeningSize variable). Cell variables are unique to each active cell of an event instance (e.g. an active cell may have an intensity variable). These variables are valid only while an event is active. However, SELES handles all of the memory management to ensure the variables are allocated when they are activated and are destroyed when they are deactivated. Modelers simply need to define them as appropriate, and then access/modify them as needed. Note that before their first assignment, their value is undefined.

4. Population variables are variables unique to each agent population . Group variables are unique to each agent group (sub-population). Agents variables are unique to each agent. SELES handles all of the memory management to ensure the variables are allocated when they are activated and are destroyed when they are deactivated. Note that before their first assignment, their value is undefined.

5. Layer definitions can be followed by one or more statements of the form:

FEATURE #Value : Name

This is very useful when the layer is categorical (i.e. a finite number of discrete classes), as the feature Name can be used in place of the feature Value to make the model more legible. For example, a forest species raster may have feature 4 defined as Spruce. The label Spruce may be used in place of the number 4 in the remainder of the event or cell expression specification.

6. Multi-layer definitions can be followed by one or more statements of the form:

SUB-LAYER #Value : Name

This allows sub-layers in an interleaved raster to be named and used whenever the sub-layer index is required.

7. Output variables allow users to route output to files. The user can specify a record function using an output variable to save a record in a file that has the format of a relational table (See Record functions). These tables can then, for example, be loaded into a database or spreadsheet for post-simulation analysis and exploration. This is one of the ways in which simulation information can be recorded in a file. The other two ways are through dynamic value models and raster time-series.

8. Constants allow the user to give a name to constant values, which can be used to make models more legible. There are also several built-in system constants that can be used in place of numbers:

· NUMROWS = the number of rows in the scenario.

· NUMCOLS = the number of columns in the scenario.

· NUMCELLS = the number of cells in the scenario (i.e. NUMROWS * NUMCOLS)

· LOCATION(#Row, #Col) = the location index for a given row and column

There are two other types of variables that are not put in the Definitions section. Local variables are defined within a set of state-changes, and have a scope limited to that set of state-changes only (see state-changes below). System variables are built-in variables that include:

· Time = the current time of the simulation (in the units defined by the model).

· EndTime = the end time of the simulation.

· Location = the current spatial location (location index of the active cell). The Location variable is only valid in spatial contexts (i.e. it cannot be used in an expression with a global context, like ReturnTime). Location is an index; to obtain the actual row and column of the location use the functions ROW(Location) and COL(Location). This allows models to be constructed that are scale independent. NUMROWS and NUMCOLS can be used anywhere that a number should appear, but their actual value is only determined when the model is run.

· Index = the current index value in an OVER INDEX SEQUENCE function.

· Run = the number of the current model run in a Monte Carlo simulation.

· EventId = a unique identifier assigned to each instance of an event of a particular type.

Sets, lists and graphs are dynamic linked structures. A set is an unordered collection of items, where an item is defined here as a vector of values (i.e. a one-dimensional array). Common set operations include union, intersection and member testing. A list is an ordered collection of items. Common list operations include adding or removing a new head element and cycling over all elements. Graphs are two inter-related sets of items: a set of nodes and a set of arcs, where each arc is associated with a start and end node. Global variables can be specified as sets, lists or graphs using the following syntax:

GLOBAL SET{#n} VARIABLE: <Variable Name>

GLOBAL LIST{#n} VARIABLE: <Variable Name>

GLOBAL GRAPH{#n1, #n2} VARIABLE: <Variable Name>

The first and second define the variable to be a set or list with n elements in each item. The third defines the variable to be a graph with n1 elements in the node items and n2 elements in the arc items. See the set, list and graph expressions for how to use these variables. In general, SELES manages all the dynamic allocation/deallocation of memory required, and cleans up the variables upon simulation termination. Also, these types of variables can be specified for array variables (e.g. to create an array of sets). In the dynamic model file, these variables are defined the same as other variables (i.e. as if they are single values rather than collections).

8.4 State-Changes:

The general form of a state-change is an assignment of the form:

<Variable Name> = Expression

State-changes are either prior to the main expression of a property or cell expression (Preliminary State-changes) or subsequent to it (Consequent State-changes). Preliminary State-changes are evaluated immediately before the main expression, and can be used (i) to simplify specification of the main expression by setting up local variables with complex portions of the expression, and (ii) to set up state information prior to evaluation of the main expression.

Evaluation of Consequent State-changes depends on the semantics of the property or cell expression. For site models, the main expression specifies the value to assign to cells on the target layer of the model, and the Consequent State-changes are always evaluated following the main expression. In a landscape event, each property has a particular behaviour with respect to if and when Consequent State-changes get evaluated (see previous sections).

InitialState: for each event instance created at simulation start-up

ReturnTime: when an event initiates

EventLocation: for each cell in the defined region

NumClusters and ProbInit: for each cell in which the event actually initiates

Transitions: if a transition occurs (i.e. if the main expression returns TRUE (1))

SpreadTime: after a cell has finished spreading

SpreadLocation: for each cell in the defined spread region

NumSpreadRecipients and SpreadProb: for each cell that is actually spread to

In a landscape agent, Consequent State-changes get evaluated as follows.

InitialState: for each event instance created at simulation start-up

ImmigrationTime: when an immigration instance is processed

AgentLocation: for each cell in the defined region

NumPopulations: for each population

NumGrioups: for each group

NumAgents and ProbInit: for each agent created after the initating cell is selected

Transitions: if a the agent survives (i.e. if the main expression returns TRUE (1))

PopulationTime: when the population update process starts

MoveLocation: for each cell in the defined move region

MoveProb: in the cell selected for movement

NumOffspring: for each agent created by reproduction

Notes:

1. The Consequent State-changes for ReturnTime, SpreadTime, ImmigrationTime and MoveTime are evaluated at a later (simulated) time than the main expression. For these properties, the Preliminary State-changes are evaluated before the next event is scheduled to occur or spread, and can be used, for example, to determine when (how far into the future) the event is should occur or spread. However, the Consequent State-changes are evaluated when the event is taken off the queue, except in the case of SpreadProb in which they are processed after the cell has finished spreading. For example, the Consequent State-changes for ReturnTime can be used to initialize the new event instance at the time its initiation, while those for SpreadTime can be used for processing prior to an active cell terminating.

2. If the variable is referred to that has not been defined in the Definitions section, then it is treated as a local variable. Local variables only hold a value within the scope of an state-change section. Local variables used in the Preliminary State-changes are also within the scope of the main expression, but not within the scope of the Consequent State-changes.

3. LAYER and CELL variables may be preceded by the SOURCE keyword in the SpreadProb property, as well as in the NumSpreadRecipients and SpreadLocation Consequent State-changes . This will set the value of the variable at the source cell rather than the current cell (i.e., the variable takes on values from the spreading cell rather than the recipient cell). The SOURCE keyword can also be used in region functions in spatial contexts to refer to values in the cell at which the region function is evaluated.

4. LAYER and AGENT variables may be preceded by the SOURCE keyword in the NumOffspring Consequent State-changes . This will set the value of the variable at the source cell and parent agent rather than the current cell (i.e., the variable takes on values from the spreading cell rather than the recipient cell).

5. LAYER variables may be preceded by the SOURCE keyword in the MoveProb property, as well as in the MoveLocation Consequent State-changes.

8.5 Expressions:

Expression specifications are the heart of the SELES modeling language. They provide a general structure with which simple or complex, deterministic or stochastic expressions can be described. Expression are divided into the following groups:

Constants
Distributions and Probability Density Functions

Continuous Functions
Classified Functions

Boolean Functions
Bit-Vector Functions

Control Expressions
Output Expressions

Composite Functions
Region Functions.

Matrix Functions
Set, List and Graph Functions
Independent variables referred to in expressions can be any of the variables specified in the Definitions section that is within the context of the expression, or a valid local variable (i.e. a local variable within the context of this expression). Dynamic (cell, agent etc.) variables should have been previously assigned before being used as an independent variable.

Often models require the use of boolean (TRUE or FALSE) valued variables. Some expressions return boolean values (e.g. EQUAL or GREATER OR EQUAL). If a variable is boolean valued, then the keywords TRUE and FALSE can be used instead of 1 or 0, respectively, during comparisons and assignments (wherever a number parameter is required).

The following subsections define the syntax and meaning of the available expressions and their synonyms and variants. The label “Expr” indicates that any expression can be substituted.

8.5.1 Constants

ZERO
return 0.0

ONE
return 1.0

#Value
return #Value

Constant
return value of a named constant

Constant[Expr]
return value of a named vector constant

Constant[Expr, Expr]
return value of a named array constant

8.5.2 Probability Distributions

In SELES, probability distributions are treated like functions, although they have the behaviour of selecting a value from the distribution, rather than computing the result of a deterministic function. Each time a distribution is evaluated, the value returned may be different. This is one way that stochasticity can be incorporated into SELES models. If we evaluated these distributions many times, and plotted the frequency of the values returned, the histogram should approximate the distribution.

A skewed normal distribution is like two normal distributions, with different standard deviations to the left and right. In a normal distribution, the centre is both the mean and the mode. In a skewed normal distribution, the central hump is only the mode.

NORMAL
draw value from a normal distribution,

MEAN: Expr
where the first expression specifies the

STDDEV: Expr
mean and the second specifies the

standard deviation

NORMAL(Expr, Expr)

SKEWED NORMAL
draw value from a skewed normal distribution

MODE: Expr
with a centre at the mode, where the first

LEFT STDDEV: Expr
expression specifies the mode and the second

RIGHT STDDEV: Expr
and third expressions specify the standard

deviations to the left and right of the mode

SKEWED NORMAL(Expr, Expr, Expr)

LOG NORMAL
draw value from a log normal distribution,

MEAN: Expr
where the first expression specifies the mean

STD DEV: Expr
and the second specifies the standard

deviation of the underlying normal distribution

LOG NORMAL(Expr, Expr)

WEIBULL
draw value from a Weibull distribution,

MEAN: Expr
where the first expression specifies the mean

VALUE: Expr
and the second specifies the value

WEIBULL(Expr, Expr)

NEGEXP
draw value from a negative exponential

MEAN: Expr
distribution, where the expression determines

the mean

NEGEXP(Expr)

UNIFORMDISTN
draw value from a uniform distribution, where

MIN: Expr
the first expression determines the minimum

MAX: Expr
value and the second determines the maximum

UNIFORMDISTN(Expr, Expr)

CLASSIFIED_DIST
draw value from a discrete distribution, where

CLASS Number: Expr
each expression determines the relative

:
probability of its associated class being drawn.

ENDFN

The CLASS keyword is optional.
CLASSIFIED_DIST(Number+)
in this form, the classes are assumed to start at

zero and only constant probabilities can be

given.

CLASSIFIED_DIST
in this form, the classes are assumed to start at

Expr

zero

 :

ENDFN

8.5.3 Probability Density and Cumulative Probability Functions

The following are a set of probability and cumulative density expressions. The results from probability density expressions should be multiplied by a width factor to obtain the actual probability of value X (i.e. the estimated area under the PDF curve). Without a width factor, the assumed class size is 1. A temporal PDF makes a PDF conditional, where the variable X is assumed to be a time or other increasing value. Essentially, a PDF will give the probability of value X occurring, while a TEMPORAL PDF will give the probability of X occurring given that if hasn’t occurred yet (i.e. given that that actual value of this variable will be >= X).

NORMAL PDF(Expr, Expr, Expr)
normal probability density function, where the

first expression is the value, the second is the

mean and the third is the standard deviation

NORMAL CDF(Expr, Expr, Expr)
normal cumulative density function, where the

first expression is the value, the second is the

mean and the third is the standard deviation

SKEWED NORMAL PDF(Expr, Expr, Expr, Expr)
skewed normal probability density function with

a centre at Mode, where the first expression

specifies the value, the second is the mean and

the third and fourth are the standard deviations

to the left and right of the mode.

SKEWED NORMAL CDF(Expr, Expr, Expr, Expr)
skewed normal cumulative density function,

where the first expression specifies the value,

the second is the mode, and the third and fourth

are the left and right standard deviations

LOG NORMAL PDF(Expr, Expr, Expr)
log normal probability density function, where

the first expression specifies the value, the

second is the mean and the third is the standard

deviation

LOG NORMAL CDF(Expr, Expr, Expr)
log normal cumulative density function, where

the first expression specifies the value, the

second is the mean and the third is the standard

deviation

NORMAL TEMPORAL PDF(Expr, Expr, Expr)
temporal normal probability density function

SKEWED NORMAL TEMPORAL PDF(Expr, Expr, Expr, Expr)

temporal skewed normal probability density

function

LOG NORMAL TEMPORAL PDF(Expr, Expr, Expr) temporal log normal probability density

function

UNIFORM TEMPORAL PDF(Expr, Expr, Expr)
temporal uniform probability density expression
8.5.4 Continuous Functions (Arithmetic Functions)

Variable
return value of an independent variable

Variable[Expr]
return value of a vector global variable

Variable[Expr, Expr]
return value of an array global variable

(Expr)
return value of the expression

Expression + Expression
return the sum of two expressions

Expression - Expression
return the value of the first expression minus the

value of the second expression

Expression * Expression
return the product of two expressions

Expression / Expression
return the value of the first expression divided

by value of the second expression

Expression ^ Expression
return the value of the first expression to the

Power of the value of the second expression.

An nth root can be computed by using 1/n as

the power.

Expression % Expression
return the value of the first expression modulo

the value of the second expression (assumes

that the values of the expressions are integers)

EXP(Expr)

return the base of the natural logarithm (e) to the

power of the expression

LOG(Expr)

return the natural logarithm of the value of the

expression. Logarithms in other bases can be

computed as logb(x) = ln(x) / ln(b)

ROUND(Expr)
return the value the expression rounded to the

nearest integer

FLOOR(Expr)

return the largest integer smaller than the value

of the expression

CEILING(Expr)
return the smallest integer larger than the value

of the expression

CLAMP(Expr, MinExpr, MaxExpr)
clamp the value X of the expression to the range

[Min, Max]: if X < Min then return Min; if

X < Max return Max. Otherwise return X.

8.5.5 Continuous Functions (Trigonometric Functions)

SIN(Expr)
interpret the value of the expression as an angle

theta in degrees, and return sin(theta)

COS(Expr)
interpret the value of the expression as an angle

theta in degrees, and return cos(theta)

TAN(Expr)
interpret the value of the expression as an angle

theta in degrees, and return tan(theta).

ARCSIN(Expr)
return the inverse sine of the value of the expression

ARCCOS(Expr)
return the inverse cos of the value of the expression

ARCTAN(Expr)
return the inverse tan of the value of the expression
8.5.6 Continuous Functions (Miscellaneous)

RESPONSE(Expr, #A, #B, #C)
two-sided version of the standard response

function for the value X of the first expression:

if (X < A) return e^(-(X-A)^2/(2*(C^2))

else if (X > B) return e^(-(X-B)^2/(2*(C^2))

else return 1

DISTANCE(Expr, Expr)
compute the distance between two Location

indices (normally obtained using the Location

variable). Thus, DISTANCE(loc1, loc2) is

sqrt(sqr(loc1.x – loc2.x) + sqr(loc1.y – loc2.y))

DIRECTION(Expr, Expr)
compute the angle in degrees between two

Location indices
8.5.7 Classified and Discrete Functions

CLASSIFY(X)
if the value of variable X is equal to one of the

CLASS Number: Number
classes listed, then return the associated

 :
value. Otherwise return 0.

ENDFN

CLASSIFY(X): (Number+)
return the kth number in the list, where

k = X – minimum value of the variable (this

may be non-0 only for layers)

CLASSIFY(X)
if X is equal to one of the classes

CLASS Number: Expr
listed, then return the result of

 :
then associated expression. Otherwise

ENDFN
return 0.

CLASSIFY(X)
return the result of the kth expression

Expr
in the list, where k = X – minimum

 :
value of the variables (for most

 :
variables, this is 0, but it may be

ENDFN
different for layers)

CLASSIFY(X): Filename
uses the table in the named file, which is

assumed to consist of class:value pairs

CLASSIFY(X): Filename Key
uses the table in the named file, which is

assumed to consist of class:value pairs. The key

is used to specify a sub-table in a multi-table

file.

Classified functions use the variable as an index into the list of numbers or expressions that follow. The “CLASS” keyword is optional. This variable must be non-negative. If “CLASS # :” is used, then the number refers to the value of the indexing variable. If a class is not specified, its expression will implicitly be ZERO. Interpolation tables, are very similar except that the variable is assumed to be continuous instead of classified. An interpolated value between classes is returned. Lookup tables are also similar, except that both the variable and classes are assumed to be continuous values. An Interpolated value between classes is also returned.

INTERPOLATE(X)
return an interpolated value where the value of

CLASS Number: Number
variable X is placed between two classes or at

 :
either end of the table.

ENDFN
INTERPOLATE(X): (Number+)
same as above, except the classes are

implicitly 0, …. k-1

INTERPOLATE(X)
same as above, except the values in the

CLASS Number: Expr
table are obtained by evaluating expressions

 :

ENDFN

INTERPOLATE(X)
same as above, except the classes are

Expr
implicitly 0, …, k-1

 :

ENDFN

INTERPOLATE(X): Filename
uses the table in the named file, which is

assumed to consist of class:value pairs

INTERPOLATE(X): Filename Key
uses the table in the named file, which is

assumed to consist of class:value pairs. The key

is used to specify a sub-table in a multi-table

file.

LOOKUP(X)
return the interpolated value where the value of

CLASS Number: Number
variable X is placed between two classes or at

 :
either end of the table, and classes can be any.

ENDFN
real values.
LOOKUP(X): (Number+)
same as above, except the classes are

implicitly 0, …. k-1

LOOKUP(X)
same as above, except the values in the

CLASS Number: Expr
table are obtained by evaluating expressions

 :

ENDFN

LOOKUP(X)
same as above, except the classes are

Expr
implicitly 0, …, k-1

 :

ENDFN

LOOKUP(X): Filename
uses the table in the named file, which is

assumed to consist of class:value pairs

LOOKUP(X): Filename Key
uses the table in the named file, which is

assumed to consist of class:value pairs. The key

is used to specify a sub-table in a multi-table file
8.5.8 Boolean Functions

Expr EQUAL Expr
return TRUE if the values of the two

expressions are equal; otherwise return FALSE

Expr EQ Expr
alternate form of EQUAL comparison

Expr == Expr
alternate form of EQUAL comparison (Note: two equal signs distinguish this from an assignment)

Expr NOT EQUAL Expr
return TRUE if the values are not equal;

otherwise return FALSE

Expr NEQ Expr
alternate form of NOT EQUAL comparison

Expr != Expr
alternate form of NOT EQUAL comparison

Expr < Expr
return TRUE if the value of the first expression

is less than the value of the second expression;

otherwise return FALSE

Expr <= Expr
return TRUE if the value of the first expression

is less than or equal to the value of the second

expression; otherwise return FALSE

Expr > Expr
return TRUE if the value of the first expression

is greater than the value of the second

expression; otherwise return FALSE

Expr >= Expr
return TRUE if the value of the first expression

is greater than or equal to the value of the

second expression; otherwise return FALSE

!Expr

Returns the negation of the expression value

Expr AND Expr
Returns TRUE if values of both expressions

are TRUE and FALSE otherwise

Expr OR Expr
Returns TRUE if value of at least one

expression is TRUE and FALSE otherwise

Note that relations can be cascaded, with the interpretation that each operator applies independently to its surrounding pair of expressions. Thus, the expression: Expression <= Expression <= Expression (e.g. 5 <= age <= 50) specifies a “between” relation, which is TRUE only if the value of the centre expression falls in the specified range.

8.5.9 Bit-Vector Functions

SetAt and SelectAt treat an integer value (the independent variable) as a sequence of bits, each of which can be independently set and accessed. This can allow use of a single layer to hold lots of boolean information, since each cell is an integer has 8, 16 or 32 bits. For example, bits 0, 1, 2 and 3 can be used to store four different boolean states (a, b, c and d), and the sequence 0110 means that states a and d are FALSE and states b and c are TRUE. PositionList is a semi-colon separated sequence of integer or ranges (lower-upper) indicating positions in the integer (0-31). For example, the PositionList 1;4-6;27 indicates bits at positions 1, 4, 5, 6 and 27.

SETAT(Expr, PositionList, #Type)
Set the value specified by the expression, at

the positions in PositionList to: FALSE (0)

if #Type is FALSE and TRUE (1) if #Type

is TRUE, flip the bits if #Type = 2

SETAT(Expr, PositionList,#Type,#Prob)
Same as above, except each position is set

with probability #Prob

SELECTAT(Expr, PositionList)
Return FALSE(0) if none of the bits

in PositionList are set in the specified value

and TRUE(1) otherwise

MAX POSITION(Expr)
Return the maximum 0-based bit position that is

set to one in the expression value (interpreted as

a bit-vector), or –1 if no bits are set

MIN POSITION(Expr)
Return the minimum 0-based bit position that is

set to one in the expression value (interpreted as

a bit-vector), or –1 if no bits are set

8.5.10 Control Expressions

IF Expr THEN Expr ELSE Expr
if the value of the IF expression is TRUE (>= 1),

then return the value of the THEN expression,

otherwise return value of the ELSE expression

PAUSE

Halts the simulation and displays a dialog

box to which the user must respond to continue

PAUSE IF Expr
If the expression evaluates to TRUE, halts the

simulation and displays a dialog box to which

the user must respond to continue

PAUSE(#Value)
Pauses the simulation for the specified number

of milliseconds and then continues

PAUSE(#Value) IF Expr
If the expression evaluates to TRUE, Pauses the

simulation for the specified number of

milliseconds and then continues

WAIT UNTIL Expr
Suspend execution until the expression returns

TRUE (1). This is intended for controlling

communication and synchronization with

an external application (e.g. with LANDIS).

CRITICAL SECTION (Flag)
Enter (if Flag is TRUE) or exit (if Flag is

FALSE) a critical section. A critical section

gives priority to this application, and is used for

synchronizing access to shared variables

(i.e. shared with another application).

DEBUG

Update the simulation probe, if it is loaded and

The event is selected. Used to debug/verify

event behaviour.
8.5.11 Output Expressions

DISPLAY RECORD
Display on the screen the labelled

Label: Expr
values computed with the expressions listed.

 ….

ENDFN

OUTPUT RECORD(X)
Output to the record file of output variable X

Label: Expr
the labelled values computed with the

 ….

expressions listed.

ENDFN

8.5.12 Composite Functions

Compound expressions all have the same form of an expression name followed by a list of sub-expressions. If the first expression is a region function, then the subsequent expressions are all evaluated over the defined region, instead of only at the current cell. Often, composite expressions can be written more concisely as arithmetic expressions, but some complex forms are clearer using the following form. The general format is as follows:

CompositeExpressionName

Expr

 :

ENDFN

The following composite expressions are supported:

SUM

return the sum of the sub-expressions

PRODUCT
return the product of the sub-expressions

DIVIDE
return the successive division of the sub-

expressions

MEAN

return the average of the sub-expressions

GEOMETRIC MEAN
return the geometric mean of the sub-

expressions (nth root of the product for n

expressions)

MIN

return the minimum of the sub-expressions

MAX

return the maximum of the sub-expressions

EQUAL
return TRUE (1) if the sub-expressions all

evaluate to the same value and FALSE (0)

otherwise

NOT EQUAL
return FALSE (0) if the sub-expressions all

evaluate to the same value and TRUE (1)

otherwise

OR

return TRUE (1) if at least one sub-expression

evaluates to TRUE and FALSE (0) otherwise

AND

return TRUE (1) if all sub-expressions evaluate

to TRUE and FALSE (0) otherwise

LESS OR EQUAL
return TRUE (1) if the sub-expression

evaluations are all ordered according to the

relation <=, and FALSE (0) otherwise

ORDERED
same as LESS OR EQUAL

LESS THAN
return TRUE (1) if the sub-expression

evaluations are all ordered according to the

relation <, and FALSE (0) otherwise

STRICT ORDERED
same as LESS THAN

GREATER OR EQUAL
return TRUE (1) if the sub-expression

evaluations are all ordered according to the

relation >=, and FALSE (0) otherwise

GREATER THAN
return TRUE (1) if the sub-expression

evaluations are all ordered according to the

relation >, and FALSE (0) otherwise

8.5.13 Region Functions

A region expression returns the set of locations, one on each call. Their use is limited to the main expression of EventLocation, SpreadLocation,AgentLocation and MoveLocation properties, optionally as the first expression of composite expressions and in OVER REGION functions.

REGION WHOLE MAP
defines the region consisting of the entire

DECISION Expr
landscape. If there is a decision expression,

then only those cells for which this expression

returns TRUE will be included.

REGION RECT

BOTTOM: Expr
defines a rectangular region. If there is a

LEFT: Expr
decision expression defined, then only those

TOP: Expr
cells for which this expression returns

RIGHT: Expr
TRUE will be included

DECISION Expr
REGION RECT (Expr, Expr, Expr, Expr)

DECISION Expr
REGION CENTRED
defines a region centred on the current cell.

MIN DISTANCE: Expr
If there is a decision expression, then only

MAX DISTANCE: Expr
those cells for which this expression returns
[TYPE: DistanceType]
TRUE will be included.

[WRAPPED]

DECISION Expr
REGION CENTRED (Expr, Expr [, DistanceType][, WRAPPED])

DECISION Expr
DistanceType is either CARDINAL (the default) or EUCLIDEAN. Cardinal distance between two cells is the minimum number of cardinal steps (up, down, left, right) to reach one cell from the other. Euclidean distance is the straight-line distance between two points. The WRAPPED flag, if present indicates that the region wraps around the sides (vertically and horizontally) of the landscape (e.g. a location x positions beyond the right-hand side of a raster will be mapped to x positions in from the left-hand side of the raster). If not present, the landscape does not wrap.

REGION LOCATION LIST(Number+)
defines the region consisting of a set of

DECISION Expr
known location indices. If there is a decision

expression, then only those cells for which this

expression returns TRUE will be included.

REGION VECTOR (StartLocation, EndLocation)

DECISION Expr
INDEX SEQUENCE(Expr, Expr)
defines linear sequence of location indices.

DECISION Expr
If there is a decision expression, then only

those cells for which this expression returns

TRUE will be included. The system variable

Index holds the value of the index at each value

in the sequence

OVER RegionFunction
Apply a set of state-changes at all spatial

State-change

locations specified by a region function

 :

ENDFN

AT LOCATION #Expr
Apply a set of state-changes at a specified

State-change
location

:

ENDFN

8.5.14 Matrix Functions

Matrix assignment is indicated using “[=]” instead of “=”. The proper dimensions of the component arrays must be met.

Variable [=] Variable
assign variable of same dimension

Variable [=] Variable + Variable
sum variables of same dimension (or with a

constant)

Variable [=] Variable - Variable
subtract variables of same dimension (or with a

constant)

Variable [=] Variable * Variable
matrix multiplication.

Variable [=] TRANSPOSE(Variable)
matrix tranpostion

Variable [=] Variable^-1
matrix inverse

8.5.15 Set Functions

To be written

8.5.16 List Functions

To be written

8.5.17 Graph Functions

To be written

9 References

Baker, W.L. 1989. A review of models of landscape change. Landscape Ecology 2(2):111-133.

Baltzer, H., P. Braun and W. Koehler. 1998. Cellular automata models for vegetation dynamics. Ecological Modelling 107:113-125.

Forman, R.T.T. and M. Godron. 1986. Landscape Ecology. John Wiley and Sons, New York.

Itami, R. 1994. Simulating spatial dynamics: Cellular automata theory. Landscape and Urban Planning 30:27-47.

Milne, B.T. 1991. Lessons from applying fractal models to landscape patterns. In M. G. Turner and R. H. Gardner (eds.) Quantitative Methods in Landscape Ecology. Springer-Verlag, New York. Pp. 199-235.

Saupe, D. 1988. Algorithms for random fractals. In H. O. Petigen and D. Saupe (eds.) The Science of Fractal Images. Springer-Verlag, New York. Pp. 71-113.

Sklar, F.H. and R. Costanza. 1991. The development of dynamic spatial models for landscape ecology: A review and prognosis. In M. G. Turner and R. H. Gardner (eds.) Quantitative Methods in Landscape Ecology. Springer-Verlag, New York. Pp. 239-288.

de Vasconcelos, M. and B. Zeigler. 1993. Discrete-event simulation of forest landscape response to fire disturbance. Ecological Modelling 65:177-198.

Wu, J. and S.A. Levin. 1997. A patch-based spatial modeling approach: conceptual framework and simulation scheme. Ecological Modelling 101:325-346.
Outbreak Event :

Annual Growth Event :

Transitions:

ForestAge = ForestAge + 1

CanopyDensity =

 f(CanopyDensity,ForestAge)

SELES Model State Variables:

A set of raster layers

and global variables

SELES D.E.S.

Model Interpreter / Simulation Engine

Transitions:

CanopyDensity = 0

FuelLoad = FuelLoad +1

Return Time =

 NegExp(20)

Prob. Init. =

f(ForestAge)

 Return Time = 365.25 days

 Prob. Init. = 100 %

SELES Model Landscape Events:

A set of equations describing the model behaviour

GrowthEvent1

T3

{

FireEvent1

T1

FireEventn

Tm

FireEvent2

T2

Event Queue

 (maintained in chronological order)

State Variables

Exactly N locations are chosen at random for event initiation, with an equal probability for every cell.

ProbInit is a relative probability of event initiating in each cell, with the exact number of cells to initiate event = N

(See formal description below for details)

Event initiates in every cell

ProbInit NOT specified

(All cells have equal probability)

ProbInit specified

(Each cell has individual probability, Pi)

NumClusters

specified

(Event will initiate in exactly N cells.)

NumClusters

NOT specified

(No limit on number of clusters for event.)

ProbInit is the absolute probability of event initiating for each cell, with the expected number of cells to initiate event = (C (Pi)

(where C = number of cells; and Pi = ProbInit for cell i)

Immigration Time preliminary assignments

 . . .

Immigration Time

main expression

Event Instance

Event Instance

 . . .

Cluster

FuelLoad

ForestAge

CanopyDensity

DEM

VegCover

Time-Since-Fire

Remove next event from queue

Handle event, typically includes :

determine event location (where)

make state changes (what)

spread event, if required (where)

schedule next event (when)

Simulation Engine (DES)

Cluster

Active Cell

Active Cell

 . . .

 . . .

 . . .

Immigration Time consequent assignments

Initiate

Event in Cell

For each cell in event region: if Spread Prob. > random[0,1)

Create

active

cell

Spread Prob. Init. consequent assignments

For each selected location:

Create

active

cell

Initiate

Event in Cell

Select locations from event region

Spread Clusters main expression

Spread Clusters preliminary assignments

Spread Clusters and Spread Prob. Init. consequent assignments

Spread Prob. Init. preliminary assignments

(for each cell in region)

Spread Prob. Init. main expression

(for each cell in region)

Spread Location preliminary assignments

Spread Location consequent assignments

(for each cell in region)

Spread to

Cells

Spread Location main expression

Schedule

Time

. . . .

Spread Timestep preliminary assignments

Spread Timestep

main expression

Process

Spreading

Spread Timestep consequent assignments

Process

Schedule

Spread

Transitions preliminary assignments

If the main expression evaluates to TRUE

Transitions main expression

Transitions consequent assignments

Initiate

Event in Cell

For each cell in event region: if Init. Prob. > random[0,1)

Create

active

cell

Prob. Init. consequent assignments

Event Clusters preliminary assignments

Event Clusters main expression

For each selected location:

Select locations from event region

Create

active

cell

Initiate

Event in Cell

Event Clusters and Prob. Init. consequent assignments

Prob. Init. preliminary assignments

(for each cell in region)

Prob. Init. main expression

(for each cell in region)

Event Location preliminary assignments

Event Location main expression

Event Location consequent assignments

(for each cell in region)

Initiate

Cells

Return Time preliminary assignments

Return Time

main expression

Return Time consequent assignments

Initiate

Create new landscape event instance

Process

Schedule

Time

. . . .

Initiate Populations

Create new immigration instance

Process

Schedule

Time

. . . .

Prob. Init. preliminary assignments

(for each cell in region)

Prob. Init. main expression

(for each cell in region)

Agent Location preliminary assignments

Agent Location main expression

Agent Location consequent assignments

(for each cell in region)

Create

Agents

For each immigration instance:

Initial state preliminary assignments

Initial State main expression

Move Prob. consequent assignments

(for selected cell)

NumAgents preliminary assignments

NumAgents main expression

For each selected location:

Select locations from initiation region

Create

agent

Initiate

Agent in Cell

NumAgentsand Prob. Init. consequent assignments

Transitions consequent assignments

Transitions main expression

If the main expression evaluates to TRUE

Transitions preliminary assignments

Create offspring

Process

Population Update

Population Timestep consequent assignments

Population Timestep

main expression

Population Timestep preliminary assignments

Time

. . . .

Schedule

Move Location main expression

Movement selection

Move Location consequent assignments

(for each cell in region)

Move Location preliminary assignments

Move Prob. main expression

(for each cell in region)

Move Prob. preliminary assignments

(for each cell in region)

Initiate agent in cell

Num Offspring preliminary assignments

Num Offspring main expression

For each event instance:

Initial State main expression

Create

agent

For each offspring agent:

Create

Event instance

Process event instance

Initial State consequent assignments

Create

Agents

NumPopulations consequent assignments

Create groups

Create

a new population

NumGroups

main expression

For each new population:

NumPopulations main expression

NumPopulations preliminary assignments

For each new group:

Create

a new group

Create agents

NumGroups consequent assignments

NumGroups preliminary assignments

Create

Immigration instance

Process immigration

Initial State consequent assignments

Initial state preliminary assignments

Landscape

Events

Expressions

Commands

Dynamic

Model

Static

Models

GIS

Layers

Scenario

Landscape

Agents

71

