SELES Scenario Reference

Last Modified: 07/2002

	SELES v3.0
Spatially Explicit Landscape Event Simulator
Scenario Reference

This document describes the syntax and semantics for the SELES scenario files. A SELES scenario executes a sequence of commands to perform tasks such as loading spatial information, opening models and running simulations. Scenario files essentially provide a scripting language for setting up and running experments in SELES. This document describes the syntax and meaning of the commands available for scenarios. See the SELES Model Builder’s Guide for other information.

Deciphering the Syntax Descriptions
· Every command must be placed on a separate line (i.e. separated by a carriage return).
· All KEYWORD’s are shown in upper case and must be spelled exactly as shown although the parser is not case sensitive.

· Values enclosed in “<>“ indicate that the modeller may substitute an appropriate value.

· Values preceded by a “#” must be integers, those preceded by “#.#” may be any numeric;

· Values preceded by a “%” are logical values (true or false);

· Values enclosed in double quotes (“”) indicate literal strings or filenames;

· All other values are identifiers.

Most of the commands have a meaning obvious from their keyword. In cases where the semantics, or meaning, of a command is not obvious, a description is included to the right of the syntax.

General Syntax Rules

(White space (spaces, tabs, carriage returns) is ignored. Be as liberal or sparse with it as you like. Comments are treated as white space by the parser.

(Comments can be placed anywhere in a model definition file. Comments are surrounded by “/*” and “*/” (e.g. /* This is a comment, and is ignored by the parser */). In addition, any text to the right of “//” is treated as a comment.

(Literal string values must be enclosed in double quotes (e.g., “This is a literal string”).

(Filenames may be specified as literal strings or as regular text, although if spaces or unusual characters are used then enclose the name in double quotes.

(Logical value may be any of the following:
‘0’, ‘OFF’, or ‘FALSE’ to indicate false;

‘1’, ‘ON’, or ‘TRUE’ to indicate true.

Scenario Specification

A scenario file must begin with the the line:

Scenario Information

It may then include the following types of commands, in any order and number:

· Open GIS rasters:

 <filename>
 <viewname> = <filename>
Each open command is specified using the name of the raster file. Raster file names can be optionally preceded by an identifier to rename the raster. Thus, the command:

Elev100.asc

opens the raster in file “Elev100.asc” and display it in a window (view) of the same name. The command

Elevation = Elev100.asc

opens the same raster file, but displays it in a window with the name “Elevation”. Rasters can be in GRASS, ARC GRID ASCII or ERDAS formats.

Appending an asterisk and expression (e.g. “* 10”) as a suffix to one of the above commands will multiply each cell value read by the amount of the expression. This is useful to read real-value rasters.

· Save Views as GIS rasters:
SAVE <ViewName> <FileName> <Type>

Saves the raster in the specified view in the specified file. The file type must be one of GRASS, GRASS COMPRESSED, GRASS ASCII, ARC ASCII, ERDAS8 or ERDAS16.

· Open sub-model files:

<filename>

Sub-model may be static models or a Seles model file (see the SELES Static and Dynamic Model References). Note that at most one dynamic model can be loaded at a time (but this may contain multiple landscape events). Each subsequent dynamic model supercedes any previously loaded dynamic model.

· Set spatial dimensions(which override sub-model dimensions):

Model Width: #NumColumns

Model Height: #NumRows

Model Dimensions: #NumRows, #NumColumns

Model Dimensions: <ViewName>

The first two commands (which should appear together) specify the dimensions of the scenario statically. The fourth command specifies that the scenario dimensions should be the same as the dimensions of a loaded raster, where the view name must be the name of a currently loaded raster layer.

· Display commands:

Minimize All

Minimize <viewname>

Minimize Initial State

Minimize Static

Minimize

Display Resolution: Number

Tile

The first minimizes all views currently open, while the second minimizes a specified view. The third minimizes all windows that contain rasters that are part of the initial state of a dynamic model. The fourth command minimizes all windows that contain raster layers that are static in a dynamic model. This includes the initial state layers as well as other static layers. The next minimizes the entire SELES application. The Display Resolution command allows rasters to be displayed at a lower resolution than they are stored at, which may speed up display for extensive rasters. The value must be larger than 0 and at most 0.5 to take effect. The last command tiles the windows that are not minimized.

· Simulation control:

SimStart #Runs #RunLength

SimStart #Runs #RunLength PRIORITY SimPriority

DryRun

<landscape event filename> %UseEvent

The first command starts a simulation for #Runs number of runs, each of which will run for #RunLength number of time units. The second command is the same, but allows control of the simulation priority (HIGH, LOW or NORMAL). The default is NORMAL. LOW priority is useful which modifying and verifying some models to improve system response to user input. HIGH priority is useful for some mdoels to increase execution speed during batch simulations. The next command performs all the setup for a simulation without actually starting the run. This is useful to test a model to ensure that it has a valid confguration. The last command allows specify landscape events (in the current dynamic model file) to be activated or deactivated.

· String (text) variables:

$Label$ = “text”

This command sets a local variable named “Label” to the text value on the right-hand side. The dollar signs ($) must be surround the variable label to identify this as a string variable (and allow concatentation of multiple labels when using the variable). In general, string variables can be placed whereever a numeric or text value is required, and the label is replaced by the variable value. When used in place of a number, the text must denote a numeric value. When used in a postion requiring text, the variable can be concatentated with other text or string variables. For example:

x = “meso”

y = “5”

MesoView = $x$$y$.grd

This will attempt to open a raster file named “meso5.grd” into a view named “MesoView”.

· Setting model variables:

<variable> = Expression

This command changes the initial value for a global variable that must have been previously defined in a model file. Expressions are defined as:

#Value

#GlobalVariable

#GlobalConstant

$StringVariable$

(Expression)

Expression + Expression

Expression - Expression

Expression * Expression

Expression / Expression

Thus, complex arithmetic expressions can be created to define the value. Note that for using string variables, dollar signs ($) must surround the variable name and the text value must represent a number.

· Other control commands:

cwd <directory> (or cd <directory>)

Close <viewname>

Close All

The first command changes the current directory (which by default is that of the scenario file). This is useful for controlling where output files are created for different experiments. The directory name on the right-hand side can be specified usign a string variable (e.g. cwd $gisDir$). If the directory specifies a multi-level path (which may include “..” to go to parent folders), then the directory must exists. If a single level path is specified (e.g.. cwd tmp), then the folder will be created if it doesn’t exist. Sometimes it is useful to use these commands to ensure that certain directories exist (e.g. the directories used for raster output that will be scheduled be a dynamic model).

The first close command closes a specified window while the second closes all windows. This is useful for freeing memory used by rasters after a simulation has run, especially when multiple simulations are processed in batch.

· System commands:

system "command"
Execute the system command specified as a literal string. For example, sometimes it is useful to copy files in an experiement. For example, the command:

system "copy harvestRate1.txt harvestRate.txt"
copies the file harvestRate1.txt to the file harvestRate.txt (which allows modifying the harvest rate input file in this model). Note that in this case, the dynamic model must be reloaded to cause this change to take effect (since input files are generally loaded when the dynamic model is read). Any system command can be performed. In Windows, this includes any command available in a command prompt.

· Looping/wildcard commands:

A wildcard is an asterisk (*) used to denote arbitraty text (e.g. “*.txt”). Sometimes it is useful to run a sequence of commands repetitively over a set of related files. This feature is under development and will be extended in the next version. The current syntax is:

Loop($label$ = “text”)

…

end
where the text should have a single wildcard, and the “…” represents any sequence of commands. Note that loops can be nests. The following is an example loop:

model.sel

cwd age1

loop(x = “age*.grd”)

StandAge = agex.grd

cwd ..\agex

SimStart 100 1

Close StandAge

end

This sequence opens a dynamic model file and runs a simulation on each file named “age*.grd”. It also creates and changed to different directories so that output files for each simulation do not get overwritten.

· Appending output files:

Reset Output Files: %Logical
By default, each time a simulation starts (e.g. with the SimStart command), output files are cleared. This command specifies that output files are to be appended, rather than cleared. Care must be taken to ensure that old information from previous runs gets cleared. This command is especially useful with looping as shown in the following example:

model.sel

$clearFiles$ = TRUE

loop(x = “age*.grd”)

StandAge = agex.grd

Reset Output Files: $clearFiles$

$clearFiles$ = FALSE

id = x

SimStart 100 1

Close StandAge

end

This will place all output in a single set of files. Notice, however, that the files are cleared on the first time through the loop. The variable “id” is assumed to be created by the dynamic model file and can be used to differentiate outputs (e.g.. if it is placed in a column in each output file).

Each file name or command is specified on a separate line. Opening a scenario file automatically opens all GIS rasters and sub-models, and executes the commands, in the order specified. While a simulation is running, some commands are blocked until the simulation has finished, in particular models cannot be loaded, layers cannot be saved, simulation, general control and system commands cannot be processed. If encountered, the command interpreter waits until the simulation has completed before continuing. In such cases, the user interface cannot be accessed.

Any GIS layer that does not have the same dimensions as the scenario will be sub- or super-sampled to obtain a set of spatial state layers that all have the same dimensions. If a different algorithm or technique is required to georeference and match the spatial layers, then this should be done prior to loading a scenario in SELES. The dimensions in sub-model files will also be over-ridden by the scenario dimensions.

A Note on Command Ordering

Correct ordering of commands is critical to achieve the desired results.

· All input files loaded in a dynamic model are read at the time the model file is loaded in the scenario. Thus, be sure to do all copy system commands prior to loading a dynamic model. If an input file is changed during a scenario, you must re-load the dynamic model file. Since this will clear the old model and reset variable values, you must then reset any modified initial state variable values.

· Global variables are defined by the dynamic model, and so any changes to initial values must be done after the dynamic model is loaded. If the model is re-loaded, values are reset to their default initial state.

· Care must be taken when changing directories. When loading or reloding models, or copying files, the correct path must be specified relative to the current directory.

PAGE
3

