Simulation of vegetation dynamics in eastern boreal North America during pre-industrial times using LPJ-LMfire #### **Emeline Chaste** PhD in Environmental Science University of Quebec in Montreal (Canada) École Pratique des Hautes Études (France) Supervision: Martin Girardin, Christelle Hély, Yves Bergeron Collaboration: Jed Kaplan emeline.chaste@canada.ca #### Context The climate is changing and so are Canada's forest Some uncertainties... Natural variability 2 Paleoecology Weigth of drivers Local processes Costly Time-consuming ## Objectives - Present advances made in the deployment of a DGVM to simulate at high spatiotemporal resolution the responses of vegetation and fire to changes in climate during the last 6000 years; - Discuss the performance of the model at multi-millennial time-scales. #### The tool used: 4 PFTs: Chaste et al. 2018 Picea Populus # Input datasets (6000 BP - 0 BP) Climate = 7 variables 10 km x 10 km **Environment** = 4 variables (2) (3) (4) # Input datasets (6000 BP - 0 BP) Climate = 7 variables 10 km x 10 km (3)(4) (5) Directly from the French Pierre-Simon-Laplace Institute Earth system model IPSL-CM5A-LR (1.875°x3.75°) Reconstruct the monthly lightning flash density (number day⁻¹ km⁻²) from 6000 to 0 BP <u>from</u> the convective available potential energy (CAPE) available for the IPSL-CM5A-LR using the same methodology in Chaste et al. 2018 ## LPJ-LMfire: BIOMASS #### cal. k-yrs BP ## LPJ-LMfire: FIRES cal. k-yrs BP # LPJ-LMfire: GROWTH cal. k-yrs BP cal. k-yrs BP cal. k-yrs BP cal. k-yrs BP Comparison of LPJ-LMfire model simulations with reconstructions obtained from pollen and lacustrine-charcoal records With lacustrine-charcoal records With **pollen** records Age (cal. k-yrs BP) ## To keep in mind (1): - The first study: Holocene vegetation dynamics simulations with high spatial and temporal resolution in eastern boreal Canada; - Long-term regional climate largely influences the vegetation dynamics: warm growing seasons at 6000 BP allowed a rapid vegetation establishment in the east, whereas cold spring temperatures have limited biomass growth in the west; - Vegetation acts as an important "bottom-up" control on fire frequency at long time-scales. ## To keep in mind (2): - Low biomass and high Populus cover percentage contributed to low simulated fire activity; - Simulated trajectories in fires and vegetation changes during the last 6000 years were not entirely synchronous with reconstructions of fire frequency and tree biomass: LPJ-LMfire simulations captured the changes in forest dynamics further south in the west and further north in the east compared to the empirical data; - We suggest that the discrepancies between simulated and observed trajectories are associated to uncertainty in the IPSL-CM5A-LR climate dataset that has been used as an input to LPJ-LMfire. # Many thanks to: - My supervisors - Professor Jed Kaplan from the University of Lausanne - Xiao Jing Guo, biostatistician at the Laurentian forestry center - Olivier Blarquez, professor at the University of Montreal - Daniel Stubbs, scientific analyst at Calcul Quebec - Our partners: ## Questions? ``` ignitions events Spinup vegetation incertitudes grid temporal 2012 ecozone pyrogeography year equilibrium adrought day annual clim (fires pattern severity netade comparison DGV. Quebec calibration interpolation limit Tate (AFE retroation) composition spatial rcp transient input monthly NPP public productivity Pinus __frequency existen area water precipitation conditions data mean ```