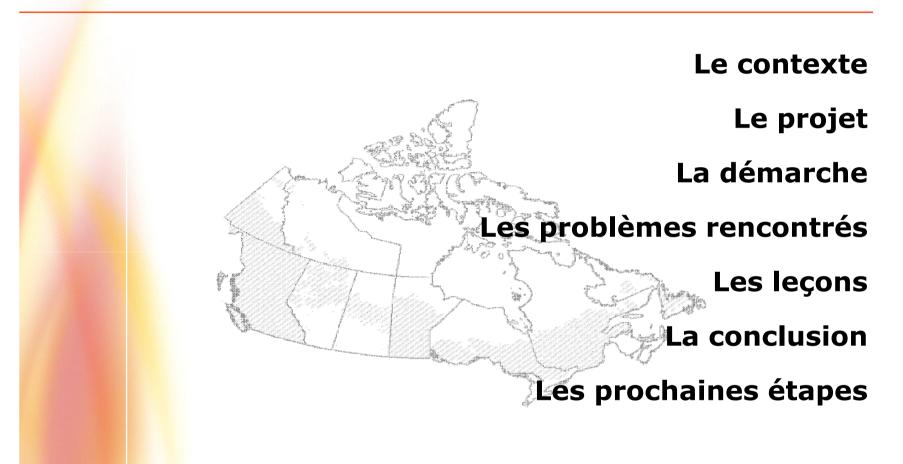
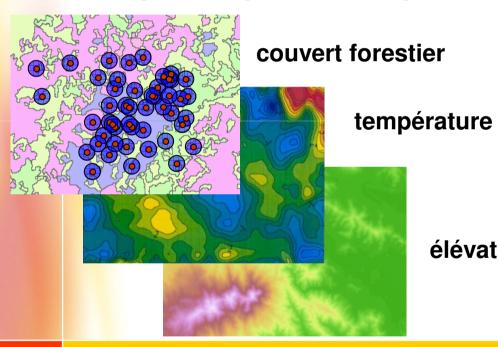

Automatisation de la conversion des inventaires forestiers canadiens avec ArcGIS et Python



Déroulement de la présentation

Le contexte Le projet La démarche s problèmes rencontrés La leçon conclusion Lés prochaines étapes

Le contexte


- Chercheurs en écologie répartis dans l'ensemble du Canada
 - Steve Cumming (U. Laval) et Erin Bayne (U. Alberta)
 - Fiona Schmiegelow et Samantha Song (Env. Canada)
 - Le projet de modélisation de l'avifaune boréale
 - The Canadian Beacons Project
 - Woodland Caribou Critical Habitat Review (Env. Canada)
 - L'Entente sur la forêt boréale canadienne (21 cies forestières)
 - Canards illimités Canada
- Modélisation, à grande échelle, des écosystèmes boréaux canadiens
- Quels sont les habitats des caribous ou des oiseaux vivant dans la forêt boréale?
 - 100 000 observations de caribou
 - 76 000 observations d'oiseau
 - 2500 transects d'observation de la sauvagine

La sélection d'habitat

- Une couche d'observations animale
- Plusieurs couches écologiques
- Analyse de proximité (buffer analysis)

geom	IDobs	pcoupe	tempMoy	elevation	etc
polygon	1	75.2	20.3	450.2	
polygon	2	26.3	15.5	467.3	
polygon	3	56.8	17.5	564.8	
polygon	4	69.2	10.4	390.2	

élévation, etc...

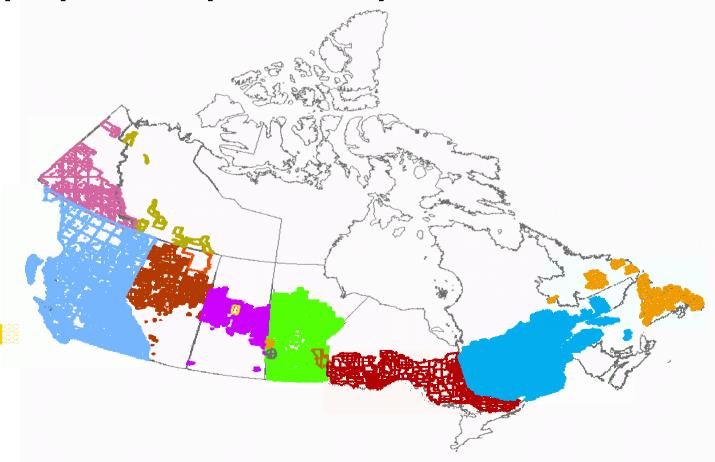
Problème des inventaires forestiers

- Il n'est pas possible de faire de telles analyses à l'échelle du Canada
 - difficulté à rassembler les données produites par plusieurs provinces, plusieurs compagnies
 - inventaires effectués avec des standards différents
 - ex.: espèces codées en français au Québec et en anglais ailleurs au Canada.
 - Ea (érable argenté) VS MS (silver maple)
- La précision de l'inventaire forestier national du Canada ne suffit pas à nos besoins

20 km

placette

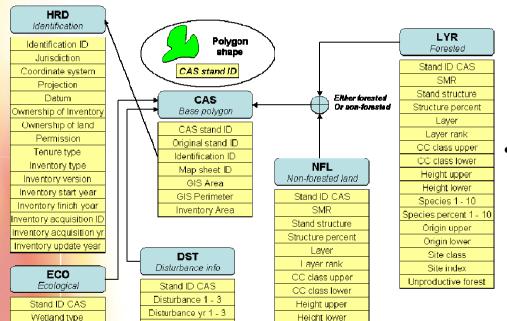
- 20000 placettes photo distancés de 20km couvrant le Canada, dont 1000 placettes terrain VERSUS la quasi totalité du territoire photo-interprété
- http://nfi.nfis.org/



Le contexte Le projet La démarche s problèmes rencontrés Les leçons conclusion Lés prochaines étapes

A Commun Attribut Schema for Canadian Forest Inventory

- Fusionner en un seul inventaire tous les inventaires forestiers du Canada
- 25 000 000 polygones et leurs attributs représentant tous les peuplements photo-interprétés du Canada


De nombreux inventaires...

- 24 inventaires différents (7 provinces et 2 territoires)
- 43 standards (ex. Alberta 24, Manitoba 3, etc.)
- 8672 fichiers dans plusieurs formats
 - E00
 - Coverage
 - Geodatabase
 - Shapefile
 - BD Access
 - zippés ou non et dans des projections différentes
- 250 GB de données
- Autant de licences à négocier que d'inventaire (24)

...convertie en un seul...

A Commun Attribut Schema (CAS) for Canadian Forest Inventory

Naturally non-yea

Non-forested anth

Non-forested veg

Dist ext upper 1 - 3

Dist ext lower 1 - 3

- CAS_ID
 - · Clé étrangère de toutes les tables
 - · Concaténation de...
 - province
 - standard
 - feuillet
 - identifiant du polygone
 - Ex.: QC_0001_32D03NE_63829346
- Utilisation d'intervalles (upper et lower) pour recoder de manière uniforme plusieurs types de classes souvent codés en un seul attribut
 - Ex.: Hauteur inv. du Québec
 - classe 2 (17-22m)
 - height upper = 22
 - height_lower = 17

Wetland veg cover

Vetland landform mod

Wetland local mod

Ecosite

...en deux étapes!

Exportation (Python et ArcToolbox)

- Exportation aveugle de tous les attributs associés aux fichiers géospatiaux en CSV (comma separated value)
- Production du CAS_ID
- Conversion (Perl)
 - Conversion des valeurs des attributs dans le standard CAS
- Pourquoi en deux étapes?
 - Isoler les techniques de conversion de fichiers (Python + ArcGIS) des techniques de recodage des attributs (conversion de fichiers texte avec Perl)

Choix des technologies

Python et ArcToolbox

- Permet l'automatisation de tous les outils de geoprocessing de ArcGIS
- Plus générique que FME (qui nous oblige à écrire des scripts de toute façon)
- Vrai langage (plus flexible que ModelBuilder) et tout de même facile à apprendre
- Éditeur et débogueur simple à utiliser
- Possibilité de documenter le processus dans le code

Perl

 Langage spécialisé dans le traitement d'information de type texte

Des scripts semblables pour procéder à l'exportation

43 scripts

• Ex.: Colombie-Britannique 3 standards = 3 scripts

Étapes similaires

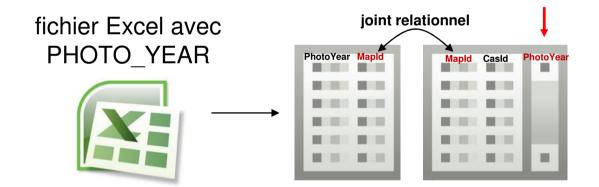
- Exporter dans un format commun (shp, csv)
- Créer un identifiant unique
- ...

Résultats

- 6171 csv
- 6171 shp

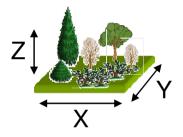
```
FI.sort()
 myWrite(logFile, " Done\n")
 for map in FI:
      ## Copy in a new shp file the selected features
      inFile = InputDir + "/" + map + "/forest/polygon"
      outFile = shpOutputDir + "/" + outName + ".shp"
      myWrite(logFile, "10 - Convert " + inFile + " into shp...")
      gp.FeatureClassToShapefileinFile, outFile)
      myWrite(logFile, " Done\n")
      ## Create a CAS ID field and derive its value
      inFile = shpOutputDir + "/" + outName + ".shp"
      myWrite(logFile, "11 - Adding CAS ID field to " + inFile + "...")
      gp.AddField(inFile, "CAS ID", "TEXT", 40)
      op.CalculateField(inFile, "CAS ID","'"str(HeaderId)+ " ' + str(!FC ID!)", "PYTHON")
      myWrite(logFile, " Done\n")
      ## Create a HEADER ID field and set its value
      myWrite(logFile, "12 - Adding HEADER ID field to " + inFile + "...")
      qp.AddField(inFile, "HEADER ID", "SHORT")
         Calamiatariald/imrila "Uranor In" Uaadamid, "Dymuan""
PythonWin 2.5.1 (r251:54863, Apr 18 2007, 08:51:08) [MSC v.1310 32 bit (Intel)] on win32.
Portions Copyright 1994-2008 Mark Hammond - see 'Help/About PythonWin' for further copyright information.
```

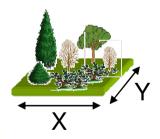

1. Pas d'outil de geoprocessing pour exporter en CSV


Création d'une fonction spécifique

```
def ExportSHP2CSV(
inSHPName, #shapefile à exporter
outCSVName, #fichier CSV à écrire
srcFieldList, #liste des champs du fichier shp
dstFieldList #liste des champs à écrire dans le CSV
)
```


2. Juxtaposition d'information ne provenant pas des inventaires: PHOTO_YEAR


- Création d'une table supplémentaire au lieu de briser le principe d'exportation aveugle
- Joint relationnel pour associer le CAS_ID au PHOTO_YEAR



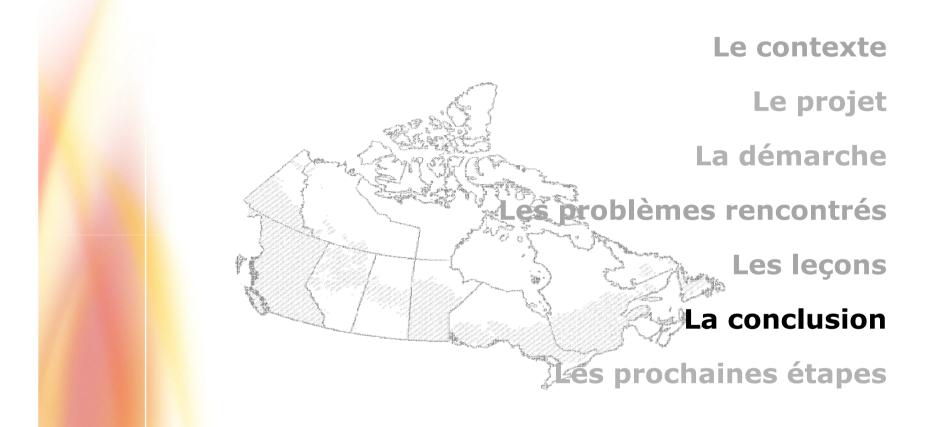
3. Présence de polygones ayant une troisième dimension

Rend impossible l'intégration dans PostGIS

Z: Hauteur moyenne du polygone

Soustrait l'information de hauteur pour garder le polygone en 2D

gp.OutputZFlag = "DISABLED"



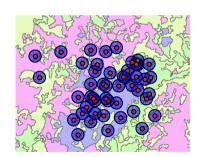
Les leçons

- Il est possible pour un apprenti-programmeur d'automatiser des opérations de geoprocessing
 - La documentation des outils de geoprocessing est excellente et indispensable
 - Tous les scripts ont plus ou moins la même structure
 - Python est un langage facile à apprendre
 - Le forum ESRI est d'une grande aide
- Il aurait été préférable d'utiliser un seul langage pour les étapes d'exportation et de conversion (Python)
- Il est indispensable de faire le suivi (dans une base de données) de tous les problèmes (bugs) rencontrés

La conclusion

- Beaucoup de chercheurs en écologie au Canada s'intéressent à la modélisation du paysage à grande échelle
- Il n'existait pas d'inventaire forestier couvrant le Canada répondant à leurs besoins
- Il nous a fallu convertir et fusionner tous les inventaires forestiers du Canada
- Python et ArcToolbox se sont avérés de TRÈS bons outils pour relever ce défi
- Un programmeur novice peut réaliser ce travail

Les prochaines étapes


 Écriture d'un méta-script appelant tous les autres

- Validation du résultat de la conversion
- Gestion des mises à jour

- Création des futures versions
- Importation dans PostGIS
- Requêtes SQL dans PostGIS
- Passage à ArcGIS 10

Merci

Autres personnes ayant contribuées au projet

John Cosco and Gido Langen de Timberline

Natural Resource Group

Natural Resource Group

Output

Description:

Natural Resource Group

Natural Resource Group

Output

Description:

Natural Resource Group

Natural Res

- Bénédicte Kenmei, Zhong Li, Etienne Bellemare, **Trish Fontaine, Nadele Flynn et Nancy Holloway**
- Gillian Binsted

