
Store, manipulate and analyze raster data within
the PostgreSQL/PostGIS spatial database

Pierre Racine
Research Assistant
Centre for Forest Research

Steve Cumming
Centre for Forest Research

Wood and Forest Science Department
University Laval, Quebec, Canada

Boreal Avian
Modelling Project

FOSS4G Denver

September 2011

Introducing PostGIS Raster

• Support for rasters in the PostGIS spatial database
- RASTER is a new native base type like the PostGIS GEOMETRY type
- Implemented very much like and is as easy to use as the PostGIS

GEOMETRY type
� One table row = one raster (or tile)
� One table = one coverage

- Integrated as much as possible with the GEOMETRY type
� SQL API easy to learn for users already familiar with PostGIS
� Full raster/vector analysis capacity taking nodata value into account
� Operators & functions works seamlessly when possible

- First release with PostGIS 2.0 (soon)

• Development Team
- Current: Bborie Park, Jorge Arevalo, Pierre Racine,

David Zwarg, Regina & Leo Obe
- Past: Sandro Santilli, Mateusz Loskot

• Founding
- Steve Cumming through a Canada Foundation for Innovation grant
- Deimos Space, Davis University, Cadcorp, Azavea, OSGeo

Chapter 13 on
PostGIS Raster

• Each raster/tile is georeferenced
- Supports rotation (or skew)

• Supports multiple bands with different
pixeltypes in the same raster

� 1BB, 8BSI, 8BUI, 16BSI, 16BUI, 32BSI, 32BUI, 32BF, 64BF

- One nodata value per band

• Tiled & indexed
- No real limit on size

� 1 GB per tile, 32 TB per coverage (table)

� Rasters are compressed (by PostgreSQL)

- Supports irregularly tiled & overlapping coverages

• Other resolutions (or overviews) are stored in sister tables

• List of raster columns available in a raster_columns table similar to
the geometry_columns table

Georeferenced, Multiband,
Multiresolution and Tiled Coverages

upperLeftX,
upperLeftY

scaleX

scaleY

skewX

skewY

e.g. SRTM Coverage for Canada

Supports Many Raster Arrangements

overlaps

a)warehouse of untiled
and unrelated images
(4 images)

d)rectangular regularly
tiled raster coverage
(54 tiles)

Table 1

Table 2

e) tiled images (2 tables
of 54 tiles)

b)irregularly tiled raster
coverage (36 tiles)

missing
tile

smaller
tiles

c) regularly tiled raster
coverage (36 tiles)

missing
tile

same
size tiles

f) rasterized geometries
coverage (9 lines in the
table)

empty space

What You Can Do Now?
Store and manage rasters in the database…

• Batch import rasters

- raster2pgsql.py -r “c:/temp/mytiffolder/*.tif” -t mytable -s 4326
-k 50x50 -I | psql -d testdb

• Get and set the raster properties

- Upper left corner coordinates & transformation parameters

- SRID & number of bands

• Get and set band properties

- Pixel type & nodata value

• Reproject raster (ST_Transform)

• ST_Resample(raster), ST_Rescale(), ST_SnapToGrid()

• Convert a geometry to a raster (ST_AsRaster)

• Convert a raster to a set of geometries-values
(ST_DumpAsPolygons)

What You Can Do Now?
Dump rasters from the database…

• With the 'PostGISRaster' GDAL driver

- Developed and maintained by Jorge Arévalo

• Read only, optimization in progress

• The write part is still to do (by you?)

• Two modes

1. ONE_RASTER_PER_ROW

2. ONE_RASTER_PER_TABLE

What You Can Do Now?
Get raster statistics…

• ST_SummaryStats(raster)

- Return a set of (min, max, sum, mean, stddev, count (of
withdata pixels)) records

- 10 seconds for one SRTM tile of 3600 x 3600 pixels, 70MB

• ST_Histogram(raster, bin, width[])

- Return a set of (min, max, count, percent) records for an array
of bins

• ST_Quantile(raster, quantiles[])

- Return a set of values for an array of quantile

• ST_ValueCount(raster, values[])

- Return the frequency for an array of value

What You Can Do Now?
Display rasters…

• QGIS plugin by Maurício de Paulo
(mauricio.dev@gmail.com)

• gvSIG plugin by Nacho Brodin (ibrodin@prodevelop.es)

• MapServer through GDAL

- Normally any software using GDAL to read raster and allowing
passing database connection parameters to GDAL

• Display a vectorization of the raster

- OpenJump
� SELECT ST_AsBinary((ST_DumpAsPolygons(rast)).geom),

(ST_DumpAsPolygons(rast)).val
FROM srtm_tiled WHERE rid=1869;

- ArcGIS 10
� Add Query Layer (same as OpenJump but without ST_AsBinary())

- Any software displaying vector PostGIS queries

What You Can Do Now?
Edit and compute new rasters…

• ST_SetValue() of a pixel

• ST_Reclass() a raster

• ST_MapAlgebra(raster, band,
expression,
nodatavalueexpr,
pixeltype)

- Expressions are evaluated by the PostgreSQL parser

- You can use any complex SQL expression

- e.g. 'CASE WHEN rast < 0 THEN rast+10 ELSE NULL END'

- You can provide a nodatavalueexpr to handle source nodata
values

-4

-1

-2

2

-4

0

0

2

1

6

9

8

6

null

null

null

null

null

What You Can Do Now?
Convert rasters to any GDAL format in SQL…

• Get the list of GDAL drivers available (ST_GDALDrivers)

• Convert to any of the available format (ST_AsGDALRaster)

- SELECT ST_AsGDALRaster(rast, 'USGSDEM')
FROM srtm_22_03

• ST_AsTIFF(), ST_AsJPEG(), ST_AsPNG()

What You Can Do Now?
Intersects rasters with points and lines…

• Extract ground elevation values for lidar points…

- SELECT pointID, ST_Value(rast, geom) elevation
FROM lidar, srtm WHERE ST_Intersects(geom, rast)

• Intersect a road network to extract
elevation values for each road segment

- SELECT roadID,
(ST_Intersection(geom, rast)).geom road,
(ST_Intersection(geom, rast)).val elevation

FROM roadNetwork, srtm WHERE ST_Intersects(geom, rast)

1000m

0m

What You Can Do Now?
Intersects rasters with polygons…

• Compute the mean temperature for each polygons of a table

SELECT bufID, (gv).geom buffer, (gv).val temp
FROM (SELECT bufID, ST_Intersection(geom, rast) gv

FROM buffers, temperature
WHERE ST_Intersects(geom, rast)

• Results must be summarized per buffer afterward

• All analysis functions take nodata values into account

• Have a look at the tutorial in the PostGIS Raster wiki page!

∩∩∩∩ =

buffers
geom pointid

polygon 24

polygon 46

polygon 31

polygon 45

… …

temperature
raster
raster

raster

raster

raster

…

result
geom pointID temp

polygon 24 11.2

polygon 53 13.4

polygon 24 15.7

polygon 23 14.2

… … …

id=24
temp=11.2

id=24
temp=15.7

What You Can Do Now?
Create a high resolution analysis grid for a large area…

Compute values of many variables for each cell of a grid

• Road & river length, mean temperature, population, water surfaces, etc…
• Easy in vector mode (1 cell = 1 polygon) but

• What about all of USA at 10m?

• Manageable in raster format!
• 15 000 000 tiles 100x100 pixels

1. Create a raster having a uid
per pixel

2. Intersect your vector layers
with your raster grid

3. Summarize per pixel uid
4. Create a new band for each variable and assign the values

500 000 x 300 000
=

Way too many polygons!

5000 km

3000 km

What You Can Do Now?
Create a specialised web or desktop GIS application…

• With the raster API, PostGIS is now a very complete SQL GIS

- All data are implicitly tiled and spatially indexed

- No need to write complex C,C++, Python or JAVA code to
manipulate complex geographical datasets.

- Use SQL: The most used, most easy and most
minimalist though complete language to work
with data in general. Easily extensible (PL/pgSQL)

- Keep the processes close to the data where the
data should be: in a database!

• Lightweight multi-users specialized
desktop and web GIS applications

- All the (geo)processing is done in the database

- Applications become simple SQL query builders
and data (results) viewers

Desktop or Web
Applicaton

(query building
& display)

Spatial Database
(geoprocessing)

SQL

attribute,
vector

or raster
table

What You Can Do Now?
Implement a WPS server raster/vector geoprocessor…

Desktop or Web
WPS Client

PostGIS
(geoprocessing)

WPS
query

WPS
response

WPS Server

SQL

attribute,
vector

or raster
table

Performance?

• Import of 1 GB SRTM DEM files

- tiled to 48373 100x100 pixels tiles: 3 minutes

- tiled to 525213 30x30 pixels tiles: 6 minutes

• ST_Intersection() of 814 buffers with the 30x30 SRTM

- 4 minutes

• ST_Intersection() of 100 000 lines with a 300 MB landsat
coverage

- 8 minutes

• Recently selected by the main Canadian governmental
provider of geospatial data (GeoBase)

- online on-the-fly and internal elevation product generation

• PostGIS raster is still a baby, many optimizations are
still possible

• PostGIS Raster is multiband, tiled, multiresolution

- Each band supports one nodata value, one pixel type.

- One row = one raster, one table = one coverage.

- Supports many tile arrangement.

- Very much like a vector coverage.

- Import is done the same way as usual with PostGIS:
raster2pgsql

• There are plenty of functions to…

- manipulate,

- edit,

- do raster and raster/vector analysis,

- get raster statistics,

- create new rasters,

- write web and desktop applications.

Summary

• Roadmap…

- Two raster version of ST_Intersection()

- Neighbor version of ST_MapAlgebra()

- Two rasters version of ST_MapAlgebra()

- Aggregate rasters with ST_Union()

- Statistic functions as aggregates

- ST_Interpolate() from irregular grid of point (lidar)

- ST_AsDensity() to produce density maps

• Third party developments…

- GDAL write driver

- Support in GeoServer

- Read/write in FME

Summary

What You Can Do Soon?
More complex analyses…

• Two rasters ST_Intersection()

- ST_Intersection(raster, raster) -> raster

- Equivalent to ST_Clip(raster, ST_AsRaster(geometry))

• One raster neighbor version of ST_Mapalgebra()

- or “ focal function ” or “moving window” computation

- User function taking a 3x3, 5x5, 7x7, or more
raster and optional parameters and returning a value

• Two rasters version of ST_MapAlgebra

- Useful to implement most overlay functions and more
� ST_Union(raster, raster) -> raster

� ST_Intersection(raster, raster) - > raster

� ST_BurnToRaster(raster, geometry, value)…

- Resulting extent can be FIRST, SECOND, UNION or INTERSECTION.

-4

-1

-2

2

-4

0

0

2

1

-10

-2

-5

0

-12

-2

0

2

1

0

-4.5

-6

0

What You Can Do Soon?
Aggregate many tiles into one raster… (or merge)

• Use ST_Union() as an aggregate function

- Taking a state, a temporary and a final function specifying how to
aggregate pixel values in a state, a temporary and a final raster

- User can defines their own expressions or use predefined
functions like FIRST, LAST, MIN, MAX, SUM, MEAN, COUNT

• Ex. SELECT ST_Union(raster, 'MEAN')

- Compute the mean pixel value of many overlapping pixels

- The state function 'SUM' accumulate pixel values

- The temporary function 'COUNT' count the number of pixels

- The final function 'state raster/temporary raster' divide the sum
by the count

- See pl/pgsql code in raster/script/plpgsql/st_union.sql

Thanks!

http://trac.osgeo.org/postgis/wiki/WKTRaster

Chapter 13 on PostGIS
Raster April 2011

Some extra slides…

Comparison with Oracle GeoRaster

Oracle GeoRaster

• Stored as a one to many relation
between two types, in two
different tables
- SDO_GEORASTER (raster)

- SDO_RASTER (tile)

- Only SDO_RASTER is georeferenced

• Supports (too) many raster
features for any kind of raster
application
- bitmap mask, two compression

schemes, three interleaving types,
multiple dimensions, embedded
metadata (colour table, statistics,
etc…), lots of unimplemented features

• Hard to load data

• Designed for raster storage

PostGIS Raster

• Stored as a unique type, in one
table

- RASTER (or tile)

- Each raster is geoferenced

• Supports the minimal set of
characteristics for the geospatial
industry

- georeference, multiband, tiling,
pyramids, nodata values

• Easy to load data

• Designed for raster/vector
analysis

What You Can Do Now?
Store and manage rasters stored outside the database…

• By default raster are stored INSIDE the database in the
PostGIS raster format

• It is also possible to register in the database
rasters stored OUTSIDE in the file system

- Stored in any GDAL format

- Faster direct access for web apps (JPEGs)

- Avoid useless database backup of large
datasets not requiring edition

- Avoid importation (copy) of large
datasets into the database

- Provides an easy SQL API to
manipulate/analyse raster files

- Use the –R raster2pgsql.py option

- All functions should eventually works
seamlessly with out-db raster. Now only a few.

BD

Web Client

landcover
raster
raster

raster

raster

raster

…

Web server

Web service

SQL

Image01.jpg

JPEGs

Image02.jpg

Image03.jpg

Image04.jpg

…

HTTP

What You Can Do Now?
Develop new raster processing functions…

• ST_MakeEmptyRaster()

• ST_AddBand()
- Empty band or copy a band from another raster

• All georeference setters
- ST_SetScale (), ST_SetSkew(), ST_SetUpperLeft(), ST_SetGeoReference()

• ST_SetBandNodataValue

• ST_SetValue()

• Coordinates transformation helpers
- ST_World2RasterCoordX(), ST_World2RasterCoordY(),

ST_Raster2WorldCoordX(), ST_Raster2WorldCoordY()

• ST_Intersection() & ST_intersects()
- To interact with vector data

• Many more…

What You Can Do Now?
Develop new raster processing functions…

• PL/pgSQL example for ST_DeleteBand

CREATE OR REPLACE FUNCTION ST_DeleteBand(rast raster, band int)
RETURNS raster AS $$
DECLARE

numband int := ST_NumBands(rast);
newrast raster := ST_MakeEmptyRaster(rast);

BEGIN
FOR b IN 1..numband LOOP

IF b != band THEN
newrast := ST_AddBand(newrast, rast, b, NULL);

END IF;
END LOOP;
RETURN newrast;

END;
$$ LANGUAGE 'plpgsql';

What You Can Do Soon?
Write to PostGIS raster with GDAL…

• A write GDAL driver does not exist yet.

• It should allows

- loading raster in the database using gdal_translate

- loading many raster at the same time

- any application writing to GDAL to write to PostGIS raster

- tiling a raster to any tile size

- to create overviews

What You Can Do Soon?
Complex MapAlgebra analyses…

• Already available: One raster version of ST_MapAlgebra()

• Soon: Faster user-defined function version

- Function taking a pixel value and some
parameters and returning a computed value

� CREATE FUNCTION polynomial(x float,
VARIADIC args TEXT[])

RETURNS FLOAT AS $$
DECLARE

m FLOAT;
b FLOAT;

BEGIN
m := args[1]::FLOAT;
b := args[2]::FLOAT;
return m * x + b;

END; $$ LANGUAGE 'plpgsql';

� SELECT ST_MapAlgebra(raster, 'polynomial', ARRAY['1.34', '5.2'])

What You Can Do (maybe not too) Soon?
Interpolate a raster coverage from a point coverage…

• ST_Interpolate(pts geometry)

- Should be an aggregate returning one raster
(or a set of tiles)

- Implementing many different interpolation
algorythms

� Nearest neighbor, linear, polynomial

- Very useful to convert lidar data to raster

• ST_AsDensity(geometry)

- Count the number of features touching each
pixel and then smooth the surface using a
moving window (neighbor map algebra)

What You Can Do (maybe not too) Soon?
Create a clean raster coverage… from a messy one…

1. Load a bunch of unaligned overlapping rasters
(e.g. landsat)

2. ST_SetBrightness() & ST_SetContrast()

- or ST_NormalizeColor('table', 'rasterColumn')

3. ST_MakeEmptyRasterCoverage()

- Create a vector grid or an empty raster coverage based on a set
of parameters

4. ST_MapAlgebra(emptyRaster, messyRaster, 'MEAN',
'FIRST') -> raster

