VRN

Stockage, manipulation et analyse de
données matricielles avec PostGIS Raster

_ Boreal Avian PostgreSQL | \u Cadcorp’

Pierre RaCi ne ‘é‘é; Modelling Project

PrOfeSSionel de reChe rChe :w The Canadian BEACONs Project d e l m S
Centre d’étude de |a forét \7 z Boreal Ecosystems Analysis of Conservation Networfs 6 PARAGON
Département des sciences " |
du bois et de la forét, esbazavea
Université Laval, Québec UCDAVIS

elEl UNIVERSITE
Session PostgreSQL @f Espaia
Paris, juin 2011 CClL s LAVAL Vi

Centre d'étude de la forét

Introducing PostGIS Raster

* Support for rasters in the PostGIS spatial database
- RASTER is a nhew native base type like the PostGIS GEOMETRY type

- {mplemented very much like and as easy to use as the GEOMETRY
ype
= One row = one raster
= One table = one coverage
- Integrated as much as possible with the GEOMETRY type
= SQL API easy to learn for usual PostGIS users
= Full raster/vector analysis capacity taking nodata value into account.
= Seamless when possible.

- First release with future PostGIS 2.0

* Development Team

- Current: Bborie Park, Jorge Arevalo, Pierre Racine,
Regina & Leo Obe

- Past: Sandro Santilli, Mateusz Loskot, David Zwarg Chapter 13 on

- PostGIS Rast
° Foundlng > =

- Steve Cumming through a Canada Foundation for Innovation grant
- Deimos Space, Davis University, Cadcorp, Azavea, OSGeo

Georeferenced, Multiband,
Multiresolution and Tiled Coverages

upperLeftX,
Georeferenced upperLeftY!

- Each tile/raster is georeferenced 3.
- Support for rotation (or skew) skewY E
Multiband

- Support for band with different scalgY

pixeltypes in the same raster

= 1BB, 8BSI, 8BUI, 16BSI, 16BUI, 32BSl, 32BUI, 32BF, 64BF “
wi

- Full supports for nodata values (one per band)

- No real limit on number of band ¢.g. SRTM Coverage for Canada
Tiled =S

- No real distinction between a tile and a raster N S A

- No real limit on size . a| e

= 1 GB per tile, 32 TB per coverage (table)
= Rasters are compressed (by PostgreSQL)

- Support for non-rectangular tiled coverage

Multiresolution (or overviews) are stored in different tables

List of raster columns available in a raster columns table similar to
the geometry_columns table

Supports Many Raster Arrangements

overlaps

a) warehouse of untiled
and unrelated images
(4 images)

smaller
tiles

b)irregularly tiled raster
coverage (36 tiles)

| same
i size tiles

c)regularly tiled raster
coverage (36 tiles)

d)rectangular regularly
tiled raster coverage
(54 tiles)

Table 1

e)tiled images (2 tables
of 54 tiles)

= HHE

empty space

o e Eae]

f) rasterized geometries
coverage (9 lines in the
table)

What You Can Do Now?

Store and manage rasters in the database...

- Import a series of raster

- raster2pgsql.py -r “c:/temp/mytiffolder/*.tif” -t mytable -s 4326
-k 50x50 -l | psql -d testdb

- Very similar to shp2pgsql
- Any raster format supported by GDAL
- Get details about the raster georeference

- ST _UpperLeftX(), ST UpperLeftY(), ST Height(), ST Width(),
ST ScaleX(), ST ScaleY(), ST _SkewX(), ST SkewY(),
ST Georeference()

- ST _SRID(), ST NumBands()
- ST _Metadata()

- Get details about bands
- ST _BandPixelType(), ST _BandNodataValue(), ST _BandPath()
- ST_BandMetaData()

What You Can Do Now?

Store and manage rasters in the database...

- Change the georeference and the spatial reference

- ST _SetScale (), ST_SetSkew(), ST_SetUpperLeft(),
ST _SetGeoReference

- ST_SetSRID()

- Change a band nodata value
- ST_SetBandNodataValue()
- ST_SetBandNodataValue(rast, NULL) —to unset nodata value

- Reproject rasters
- ST_Transform(rast, srid, algorithm, maxerr)

- NearestNeighbour, bilinear, cubic, cubic spline, lanczos
- Done with GDAL

What You Can Do Now?

Store and manage rasters stored outside the database...

- Provides faster loading and export of files for desktop application

- Provides faster access for web applications (JPEGS)

- Avoid useless database backup of large
datasets not requiring edition

- Avoid importation (copy) of large
datasets into the database

- Provides an efficient SQL API to
manipulate/analyse raster files

landcover
raster =~
raster
raster
raster
raster

- All functions should eventually works
seamlessly with out-db raster

- Data read/write with GDAL (many formats)

What You Can Do Now?]
Dump rasters from the database...

- With the GDAL driver 'PostGISRaster’

- Developed and maintained by Jorge Arévalo

—
- Read only and still needs optimization

F 1\
- Two modes G DA]LI-'

1. ONE_RASTER_PER_ROW
2. ONE_ RASTER _PER_TABLE (limited)

- gdal_translate "PG:host='localhost’' dbname= 'myDB'’
user= 'me’' password= 'toto’ table= 'myTable’ mode="2" "
outputFile.tif

What You Can Do Now?
Get raster statistics...

ST _SummaryStats(raster)

- Return a set of (min, max, sum, mean, stddev, count (of
withdata pixels)) records

- 10 seconds for one SRTM tile of 3600 x 3600 pixels, 70MB

All stats function have:

- ST_Histogram(raster, bin, width[])

- Return a set of (min, max, count, percent) ° Aexclude_nodata_value

records for an array of bins il
» A version working on a
- ST_Quantile(raster, quantiles]]) Coyeragd of many Ylos
- Return a set of values for an array of - A sample_percent
quantile parameter (except
ST ValueCount())
« ST ValueCount(raster, values]]) UCDAVIS
- Return the frequency for an array of value UNIVERSITY OF CALIFORNIA

What You Can Do Now?
Display rasters...

- Display the true raster
- QGIS plugin by Mauricio de Paulo (mauricio.dev@gmail.com)
- gvSIG plugin by Nacho Brodin (ibrodin@prodevelop.es)
- MapServer

- Normally any software using GDAL to read raster and allowing
passing database connection parameters to GDAL

- Display a vectorization of the raster

- Opendump

« SELECT ST_AsBinary((ST_DumpAsPolygons(rast)).geom),
(ST_DumpAsPolygons(rast)).val
FROM srtm_tiled
WHERE rid=1869;

- ArcGIS 10
= Add Query Layer (same as Opendump but without ST_AsBinary())

- Any software displaying vector PostGIS queries

What You Can Do Now?
Edit rasters...

- ST _SetValue(raster, x, y, newval)
- ST_SetValue(raster, x, y, pt geometry)
- More ways to set raster values are planned

- ST_Reclass(raster, reclassexpr, pixeltype, nodataval)
- reclassexpr is a text string like '0-87:1-10, 88-254:11-15'
meaning map 0 to 87 to 1 to 10 and 88 to 254 to 11 to 15
- You can reset the nodata value
- You can pass an array of reclassexpr to reclass a multi-band raster

- Reclass a SRTM tile to a grayscale three band '8BUI' raster (JPEG)

« SELECT ST_Addband(ST_Addband(ST_AddBand(ST_MakeEmptyRaster(rast),
ST_Reclass(rast, '-100-2000:0-255', '8BUI')),
ST _Reclass(rast, '-100-2000:0-255', '8BUI')),
ST _Reclass(rast, '-100-2000:0-255', '8BUI')) H&;Rﬁyﬂgé
FROM srtm_22 03

What You Can Do Now?

Edit rasters...
- ST _MapAlgebra(raster, band,

expression, 11210 6
nodatavalueexpr, 1|-427>9]6
pixeltype) 2]01° °

- Expressions are evaluated by the PostgreSQL parser
- Any, really any, complex SQL expression
- e.g. 'SQRT(rast)/POWER(rast, 3) + ACOS(rast/(rast+1))'
- e.g. 'CASE WHEN rast < 0 THEN rast+10 ELSE NULL END'

- A nodatavalueexpr allow specifying an alternative
expression when the pixel is nodata

- SELECT ST_MapAlgebra(rast, 'rast/2', '32BF’, '0')
FROM srtm 22 03

What You Can Do Now?
Convert rasters to any GDAL format with SQL...

ST _GDALDrivers()
- Display the list of GDAL driver available with your version of GDAL
- SELECT (ST_GDALDrivers()).*

- ST _AsGDALRaster(rast, format, options[])

- SELECT ST_AsGDALRaster(rast, 'JPEG')
FROM srtm_22 03

- ST _AsTIFF(raster, nbands[], compression)
- Compression % can be specified after the compression 'JPEG80'

- ST _AsJPEG(raster, nbandsl[], quality)

- ST_AsPNG(raster, nbands[], compression) UCDAVIS

UNIVERSITY OF CALIFORNIA

What You Can Do Now?
Do raster/vector analysis...

- Extract ground elevation values for lidar points...

- SELECT lidarPtID, ST Value(rast, geom) elevation
FROM lidar, srtm WHERE ST_Intersects(geom, rast)

® o L}é“%}"

G.¢

- f‘wi(:’f:};),-,;
- Intersect a road network and extract OB
elevation values for each road segment

- SELECT roadiID, '
(ST _Intersection(geom, rast)).geom road &=~

(ST _Intersection(geom, rast)).val elevation
FROM roadNetwork srtm WHERE ST _Intersects(geom, rast)

*&.QM :9;;.

g&\{}v .. x., 1000m

" —_— —

.‘} =

.ﬂ-‘ g
t!:(.

Om

What You Can Do Now?

Do raster/vector analysis...

- Compute the mean temperature around a series of point

1. CREATE TABLE pointBuffers AS
SELECT pointlD, ST_Buffer(geom, 200) FROM pointTable

2. SELECT pointID, (gv).geom pointBuffer, (gv).val temp
FROM (SELECT pointID, ST _Intersection(geom, rast) gv
FROM pointBuffers, temperature
WHERE ST _Intersects(geom, rast)

pointBuffers temperature result q
geom | pointid raster |_geom _ [pointlD| temp id=24

olygon| 24 raster polygon 24 11.2 -

olygon| 46 m raster — polygon | 53 ey | temp=11.2
olygon| 31 raster polygon 24 15.7

olygon| 45 raster polygon 23 14.2

* Results must be summarized per buffer afterward
- All analysis functions take nodata values into account
- See the tutorial in the wiki

What You Can Do Now?

Create a high resolution analysis grid for a large area...

Compute the quantities of many

V’) variables for each raster cell
H ! HHANY
; 2 - Road length, mean temperature, population,
& water surface, river length, Etc...
o . qE; i
= i~ © Easy in vector mode (1 cell = 1 polygon) but
| 54| what about all of France at 10m?
Siiin i s i 100 000 x 100 000
Eﬂﬁ ﬂ) =
jisii=miihi linaA AA R = way too many polygons!
+] £ |
SPAN 5 4 |~ Manageable in raster format!
T Ram | N 1. Intersect your layers with an index raster

2. Summarize per pixel

3. Assign results to new bands

What You Can Do Now?

Create a specialised web or desktop GIS application...

- With the raster API, PostGIS is now a very complete SQL GIS

- All data are implicitly tiled and spatially indexed

- No need to write complex C,C++, Python or JAVA code to
manipulate complex geographical datasets.

- Use SQL: The most used, most easy and most

Desktop or Web

.. i Applicat
minimalist though complete language to work (qugg 'bcua“:i?,g
with data in general. Easily extensible (PL/pgSQL) & display)

- Keep the processes close to the data where the
data should be: in a database! table,
- Lightweight multi-users specialized SQL (| vector,
. . raster
desktop and web GIS applications v

- All the (geo)processing is done in the database

- Applications become simple SQL query builders [JEPEUEIRSEICEEEE
and data (results) viewers (geoprocessing)

What You Can Do Now?

Implement a WPS server raster/vector geoprocessor...

Desktop or Web
WPS Client
A

WPS WPS
query answer
4
1 table,
SQL vector,
raster

PostGIS
(geoprocessing)

What You Can Do Now?

Develop new raster processing functions...

ST MakeEmptyRaster()
ST _AddBand()

- Empty band or copy a band from another raster

All georeference setters
- ST _SetScale (), ST _SetSkew(), ST SetUpperLeft(), ST _SetGeoReference()

ST _SetBandNodataValue
ST SetValue()

Coordinates transformation helpers

ST World2RasterCoordX(), ST World2RasterCoordY(),
ST_Raster2WorldCoordX(), ST_Raster2WorldCoordY()

ST Intersection() & ST intersects()
To interact with vector data

Many more...

What You Can Do Now?

Develop new raster processing functions...

* PL/pgSQL example for ST_DeleteBand

CREATE OR REPLACE FUNCTION ST _DeleteBand(rast raster, band int)
RETURNS raster AS $$
DECLARE
numband int := ST NumBands(rast);
newrast raster := ST _MakeEmptyRaster(rast);
BEGIN
FOR b IN 1..numband LOOP
IF b != band THEN
newrast := ST _AddBand(newrast, rast, b, NULL);
END IF;
END LOOP;
RETURN newrast;
END;
$$ LANGUAGE 'plpgsql’;

Performance?

* Import of 900MB of uncompressed 16BSI GeoTIFF
SRTM
- 13 SRTM files
- tiled to 48373 100x100 pixels tiles: 3 minutes
- tiled to 525213 30x30 pixels tiles: 6 minutes

* ST Intersection() of 814 buffers with the 30x30 900 MB
SRTM coverage

- 4 minutes

* ST_Intersection() of 100 000 lines with a 300 MB landsat
image
- 8 minutes

Comparison with Oracle GeoRaster

Oracle GeoRaster PostGIS Raster
- Stored as a one to many relation | - Stored as a unique type, in one
between two types, in two table
different tables - RASTER (or tile)
- SDO_GEORASTER (raster) - Each raster is geoferenced

- SDO_RASTER (tile)
- Only SDO_RASTER is georeferenced

» Supports (too) many raster * Supports the minimal set of
features for any kind of raster characteristics for the geospatial
application industry

- bitmap mask, two compression - georeference, multiband, tiling,
schemes, three interleaving types, pyramids, nodata values

multiple dimensions, embedded
metadata (colour table, statistics,
etc...), lots of unimplemented features Easy to load data

- Hard to load data Designed for raster/vector
- Designed for raster storage analysis

What You Can Do Soon?
Write to PostGIS raster with GDAL...

- A write GDAL driver do not exist yet.

* It should allows
- loading raster in the database using gdal_translate
- loading many raster at the same time
- any application writing to GDAL to write to PostGIS raster
- tiling a raster to any tile size
- to create overviews

What You Can Do Soon?

Convert geometries to raster...
Resample/retile a raster coverage...

- ST AsRaster(geometry)
- Alignment and pixelsize can be determined from:

1. Parameters
2. The extent of the geometry

3. The first encountered segment length
(to quickly rasterize previously vectorized rasters)

4. A provided existing raster

- ST _Resample(raster)
- Only realign
- Resample and realign
- From parameters or an existing raster
- ST Intersection(raster, raster) -> raster
- Equivalent to ST_Clip(raster, ST _AsRaster(geometry))
- Useful for retiling an existing coverage to a new one

What You Can Do Soon?
Complex MapAligebra analyses...

- Already available: One raster version of ST MapAlgebra()

* Soon: Faster user-defined function version

- Function taking a pixel value and some
parameters and returning a computed value

= CREATE FUNCTION polynomial(x float,
VARIADIC args TEXT]])
RETURNS FLOAT AS $$
DECLARE
m FLOAT;
b FLOAT;
BEGIN
m := args[1]::FLOAT;
b := args[2]::FLOAT;
return m * x + b;
END; $$ LANGUAGE 'plpgsql’;

= SELECT ST_MapAlgebra(raster, 'polynomial’, ARRAY['1.34', '5.2'])

What You Can Do Soon?

Complex MapAlgebra analyses...

* One raster neighbor version

- User function taking a 3x3, 5x5, 7x7, or more
raster and optional parameters and returning a value

- Useful to implement any focal function (“moving window”)

- Possibility to pass the nhame of a coverage where to get out-of-
bound pixel values

 Two rasters version

- SELECT ST _MapAligebra(elev1.rast, elev2.rast, 'rast1 + rast2) / 2',
'32BF’, 'INTERSECTION")

FROM elev1, elev2 WHERE ST _Intersects(elev1.rast, elev2.rast)

- Useful to implement most overlay functions and more 10/ 0 | 0

= ST Union(raster, raster) -> raster a4l o0l-6ll2

= ST_Intersection(raster, raster) - > raster
= ST_BurnToRaster(raster, geometry, value)... -1 (-4.5) 0

- Resample/realign on the fly. Takes care of nodata values. | 2|9 | 1
- Resulting extent can be FIRST, SECOND, UNION or INTERSECTION.

What You Can Do Soon?

Aggregate many tiles into one raster... (or merge)

- Use ST_Union as an aggregate function

- Taking a state, a temporary and a final function specifying how to
aggregate pixel values in a state, a temporary and a final raster

- User can defines their own expressions or use predefined
functions like FIRST, LAST, MIN, MAX, SUM, MEAN, COUNT

 Ex. SELECT ST_Union(raster, 'MEAN’)

- Compute the mean pixel value of many overlapping pixels
- The state function 'SUM' accumulate pixel values
- The temporary function 'COUNT' count the humber of pixels

- The final function 'state raster/temporary raster’ divide the sum
by the count

- See pl/pgsql code in raster/script/plpgsql/st_union.sql

What You Can Do (maybe not too) Soon?
Interpolate a raster coverage from a point coverage...

« ST _Interpolate(pts geometry) aEvC

- Should be an aggregate returning one raster T s
(or a set of tiles) CPAICY)

- Implementing many different interpolation

dd]

algorythms : 3 S
= Nearest neighbor, linear, polynomial /# o L Ple

- Very useful to convert lidar data to raster

* ST _AsDensity(geometry)

- Count the number of features touching each
pixel and then smooth the surface using a
moving window (neighbor map algebra)

What You Can Do (maybe not too) Soon?
Create a clean raster coverage... from a messy one...

. Load a bunch of unalighed overlapping rasters
(e.g. landsat)

. ST_SetBrightness() & ST_SetContrast()

- or ST _NormalizeColor('table’, 'rasterColumn’)

. ST_MakeEmptyRasteerCoverage()

- Create a vector grid or an empty raster coverage based on a set
of parameters

. ST_MapAlgebra(emptyRaster, messyRaster, 'MEAN’,
'FIRST') -> raster

What You Can Do (maybe not too) Soon?
Recognize forms from images stored in the DB...

- And automatically convert them to geometries
- Need more research...

Summary

- PostGIS Raster is multiband, tiled, multiresolution
- Each band supports one nodata value, one pixel type.
- One row = one raster, one table = one coverage.
- Supports many tile arrangement.
- Very much like a vector coverage.
- Import is done the same way as usual with PostGIS:
raster2pgsq|
* There are plenty of functions to...
- manipulate,
- edit,
- do raster and raster/vector analysis,
- get raster statistics,
- create new rasters
- Write web and desktop applications in a client-server context

Thanks!

http://trac.osgeo.org/postgis/wiki/WKTRaster

Boreal Avian
P -
Lé‘_; Modelling Project

-
\ %,.,,__ The Canadian BEACONS Project
Boreal Ecosystems Analysis of Conservation Networks

Fondation canadienne pour I'innovation
Canada Foundation for Innovation

Postgre SQL

W2 Cadcorp’

deim s

(S PARAGON

oi\ dZavea

cel

Centre d'étude de la forét

el UNIVERSITE
. LAVAL

_ap Espana
Virtual

UCDAVIS

UNIVERSITY OF CALIFORNIA

"

2

A

