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Foreword

This textbook provides study materials for the participants of the course named
Multivariate Analysis of Ecological Data that we teach at our university for the third
year. Material provided here should serve both for the introductory and the advanced
versions of the course. We admit that some parts of the text would profit from further
polishing, they are quite rough but we hope in further improvement of this text.

We hope that this book provides an easy-to-read supplement for the more
exact and detailed publications like the collection of the Dr. Ter Braak' papers and
the Canoco for Windows 4.0 manual. In addition to the scope of these publications,
this textbook adds information on the classification methods of the multivariate data
analysis and introduces some of the modern regression methods most useful in the
ecological research.

Wherever we refer to some commercial software products, these are covered
by trademarks or registered marks of their respective producers.

This publication is far from being final and this is seen on its quality: some
issues appear repeatedly through the book, but we hope this provides, at least, an
opportunity to the reader to see the same topic expressed in different words.
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1. Introduction and Data Manipulation

1.1. Examples of research problems

Methods of multivariate statistical analysis are no longer limited to exploration of
multidimensional data sets. Intricate research hypotheses can be tested, complex
experimental designs can be taken into account during the analyses. Following are
few examples of research questions where multivariate data analyses were extremely
helpful:
• Can we predict loss of nesting locality of endangered wader species based on the

current state of the landscape? What landscape components are most important
for predicting this process?

The following diagram presents the results of a statistical analysis that addressed this
question:

Figure 1-1 Ordination diagram displaying the first two axes of a redundancy analysis for the
data on the waders nesting preferences

The diagram indicates that three of the studied bird species decreased their nesting
frequency in the landscape with higher percentage of meadows, while the fourth one
(Gallinago gallinago) retreated in the landscape with recently low percentage of the
area covered by the wetlands. Nevertheless, when we tested the significance of the
indicated relations, none of them turned out to be significant.
In this example, we were looking on the dependency of (semi-)quantitative response
variables (the extent of retreat of particular bird species) upon the percentage cover
of the individual landscape components. The ordination method provides here an
extension of the regression analysis where we model response of several variables at
the same time.
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• How do individual plant species respond to the addition of phosphorus and/or
exclusion of AM symbiosis? Does the community response suggest an
interaction effect between the two factors?

This kind of question used to be approached using one or another form of analysis of
variance (ANOVA). Its multivariate extension allows us to address similar problems,
but looking at more than one response variable at the same time. Correlations
between the plant species occurrences are accounted for in the analysis output.

Figure 1-2 Ordination diagram displaying the first two ordination axes of a redundancy analysis
summarizing effects of the fungicide and of the phosphate application on a grassland plant
community.

This ordination diagram indicates that many forbs decreased their biomass when
either the fungicide (Benomyl) or the phosphorus source were applied. The yarrow
(Achillea millefolium) seems to profit from the fungicide application, while the
grasses seem to respond negatively to the same treatment. This time, the effects
displayed in the diagram are supported by a statistical test which suggests rejection
of the null hypothesis at a significance level α = 0.05.

1.2. Terminology

The terminology for multivariate statistical methods is quite complicated, so we must
spend some time with it. There are at least two different terminological sets. One,
more general and more abstract, contains purely statistical terms applicable across
the whole field of science. In this section, we give the terms from this set in italics,
mostly in the parentheses. The other set represents a mixture of terms used in the
ecological statistics with the most typical examples from the field of community
ecology. This is the set we will focus on, using the former one just to be able to refer
to the more general statistical theory. This is also the set adopted by the CANOCO
program.
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In all the cases, we have a dataset with the primary data. This dataset
contains records on a collection of observations - samples (sampling units)┼. Each
sample collects values for multiple species or, less often, environmental variables
(variables). The primary data can be represented by a rectangular matrix, where the
rows typically represent individual samples and the columns represent individual
variables (species, chemical or physical properties of the water or soil, etc).

Very often is our primary data set (containing the response variables)
accompanied by another data set containing the explanatory variables. If our primary
data represents a community composition, then the explanatory data set typically
contains measurements of the soil properties, a semi-quantitative scoring of the
human impact etc. When we use the explanatory variables in a model to predict the
primary data (like the community composition), we might divide them into two
different groups. The first group is called, somehow inappropriately, the
environmental variables and refers to the variables which are of the prime interest
in our particular analysis. The other group represents the so-called covariables (often
refered to as covariates in other statistical approaches) which are also explanatory
variables with an acknowledged (or, at least, hypothesized) influence over the
response variables. But we want to account for (or subtract or partial-out) such an
influence before focusing on the influence of the variables of prime interest.

As an example, let us imagine situation where we study effects of soil
properties and type of management (hay-cutting or pasturing) on the plant species
composition of meadows in a particular area. In one analysis, we might be interested
in the effect of soil properties, paying no attention to the management regime. In this
analysis, we use the grassland composition as the species data (i.e. primary data set,
with individual plant species acting as individual response variables) and the
measured soil properties as the environmental variables (explanatory variables).
Based on the results, we can make conclusions about the preferences of individual
plant species' populations in respect to particular environmental gradients which are
described (more or less appropriately) by the measured soil properties. Similarly, we
can ask, how the management style influences plant composition. In this case, the
variables describing the management regime act as the environmental variables.
Naturally, we might expect that the management also influences the soil properties
and this is probably one of the ways the management acts upon the community
composition. Based on that expectation, we might ask about the influence of the
management regime beyond that mediated through the changes of soil properties. To
address such question, we use the variables describing the management regime as the
environmental variables and the measured properties of soil as the covariables.

One of the keys to understanding the terminology used by the CANOCO
program is to realize that the data refered to by CANOCO as the species data might,
in fact, be any kind of the data with variables whose values we want to predict. So,
if we would like, for example, predict the contents of various metal ions in river
water, based on the landscape composition in the catchment area, then the individual
ions' concentrations would represent the individual "species" in the CANOCO
terminology. If the species data really represent the species composition of
a community, then we usually apply various abundance measures, including counts,

┼ There is an inconsistency in the terminology: in classical statistical terminology, sample means
a collection of sampling units, usually selected at random from the population. In the community
ecology, sample is usually used for a descriptiong of a sampling unit. This usage will be followed in
this text. The general statistical packages use the term case with the same meaning.
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frequency estimates and biomass estimates. Alternatively, we might have
information only on the presence or the absence of the species in individual samples.
Also among the explanatory variables (I use this term as covering both the
environmental variables and covariables in CANOCO terminology), we might have
the quantitative and the presence-absence variables. These various kinds of data
values are treated in more detail later in this chapter.

1.3. Analyses

If we try to model one or more response variables, the appropriate statistical
modeling methodology depends on whether we model each of the response variables
separately and whether we have any explanatory variables (predictors) available
when building the model.

The following table summarizes the most important statistical methodologies
used in the different situations:

Predictor(s)Response
variable ... Absent Present

... is one • distribution summary • regression models s.l.

... are many
• indirect gradient analysis (PCA,

DCA, NMDS)

• cluster analysis

• direct gradient analysis

• constrained cluster analysis

• discriminant analysis (CVA)

Table 1-1 The types of the statistical models

If we look just on a single response variable and there are no predictors
available, then we can hardly do more than summarize the distributional properties of
that variable. In the case of the multivariate data, we might use either the ordination
approach represented by the methods of indirect gradient analysis (most prominent
are the principal components analysis - PCA, detrended correspondence analysis -
DCA, and non-metric multidimensional scaling - NMDS) or we can try to
(hierarchically) divide our set of samples into compact distinct groups (methods of
the cluster analysis s.l., see the chapter 5).

If we have one or more predictors available and we model the expected
values of a single response variable, then we use the regression models in the broad
sense, i.e. including both the traditional regression methods and the methods of
analysis of variance (ANOVA) and analysis of covariance (ANOCOV). This group
of method is unified under the so-called general linear model and was recently
further extended and enhanced by the methodology of generalized linear models
(GLM) and generalized additive models (GAM). Further information on these
models is provided in the chapter 11.

1.4. Response (species) data

Our primary data (often called, based on the most typical context of the biological
community data, the species data) can be often measured in a quite precise
(quantitative) way. Examples are the dry weight of the above-ground biomass of
plant species, counts of specimens of individual insect species falling into soil traps
or the percentage cover of individual vegetation types in a particular landscape. We
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can compare different values not only by using the "greater-than", "less-than" or
"equal to" expressions, but also using their ratios ("this value is two times higher than
the other one").

In other cases, we estimate the values for the primary data on a simple, semi-
quantitative scale. Good example here are the various semi-quantitative scales used
in recording composition of plant comunities (e.g. original Braun-Blanquet scale or
its various modifications). The simplest variant of such estimates is the presence-
absence (0-1) data.

If we study influence of various factors on the chemical or physical
environment (quantified for example by concentrations of various ions or more
complicated compounds in the water, soil acidity, water temperature etc), then we
usually get quantitative estimates, with an additional constraint: these characteristics
do not share the same units of measurement. This fact precludes use of the unimodal
ordination methods and dictates the way the variable are standardized if used with
the linear ordination methods.

1.5. Explanatory variables

The explanatory variables (also called predictors) represent the knowledge we have
and which we can use to predict the values of tje response variables in a particular
situation. For example, we might try to predict composition of a plant community
based on the soil properties and the type of management. Note that usually the
primary task is not the prediction itself. We try to use the "prediction rules" (deduced
from the ordination diagrams in the case of the ordination methods) to learn more
about the studied organisms or systems.

Predictors can be quantitative variables (like concentration of nitrate ions in
soil), semiquantitative estimates (like the degree of human influence estimated on a 0
- 3 scale) or factors (categorial variables).

The factors are the natural way of expressing classification of our samples /
subjects - we can have classes of management type for meadows, type of stream for
a study of pollution impact on rivers or an indicator of presence or absence of
settlement in the proximity. When using factors in the CANOCO program, we must
recode them into so-called dummy variables, sometimes also called the indicator
variables. There is one separate variable per each level (different value) of the
factor. If a particular sample (observation) has certain value of the factor, there is
value 1.0 in the corresponding dummy variable. All the other dummy variables
comprising the factor have value of 0.0. For example, we might record for each our
sample of grassland vegetation whether this is a pasture, a meadow or an abandoned
grassland. We need three dummy variables for recording such factor and their
respective values, for a meadow are 0.0, 1.0, and 0.0.

Additionally, this explicit decomposition of factors into dummy variables
allows us to create so-called fuzzy coding. Using our previous example, we might
include into our dataset site which was used as a hay-cut meadow until the last year,
but it was used as a pasture this year. We can reasonably expect that both types of
management influenced the present composition of the plant community. Therefore,
we would give values larger than 0.0 and less than 1.0 for both first and second
dummy variable. The important restriction here is (similarly to the dummy variables
coding a normal factor) that the values must sum to a total of 1.0. Unless we can
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quantify the relative importance of the two management types acting on this site, our
best guess is to use values 0.5, 0.5, and 0.0.

If we build a model where we try to predict values of the response variables
("species data") using the explanatory variables ("environmental data"), we can often
encounter a situation where some of the explanatory variables have important
influence over the species data yet our attitude towards these variables is different:
we do not want to interpret their effect, only take this effect into account when
judging effects of the other variables. We call these variables covariables (often also
covariates). A typical example is from a sampling or an experimental design where
samples are grouped into logical or physical blocks. The values of response variables
for a group of samples might be similar due to their proximity, so we need to model
this influence and account for it in our data. The differences in response variables
that are due to the membership of samples in different blocks must be extracted
("partialled-out") from the model.

But, in fact, almost any explanatory variable could take the role of
a covariable - for example in a project where the effect of management type on
butterfly community composition is studied, we might have the localities placed at
different altitudes. The altitude might have an important influence over the butterfly
communities, but in this situation we are primarily focused on the management
effects. If we remove the effect of the altitude, we might get a much more clear
picture of the influence the management regime has over the butterflies populations.

1.6. Handling missing values

Whatever precaution we take, we are often not able to collect all the data values we
need. A soil sample sent to a regional lab gets lost, we forget to fill-in particular slot
in our data collection sheet, etc.

Most often, we cannot get back and fill-in the empty slots, usually because
the subjects we study change in time. We can attempt to leave those slots empty, but
this is often not the best decision. For example, when recording sparse community
data (we might have a pool of, say, 300 species, but average number of species per
sample is much lower), we use the empty cells in a spreadsheet as absences, i.e. zero
values. But the absence of a species is very different from the situation where we
simply forgot to look for this species! Some statistical programs provide a notion of
missing value (it might be represented as a word "NA", for example), but this is only
a notational convenience. The actual statistical method must further deal with the fact
there are missing values in the data. There are few options we might consider:

We can remove the samples in which the missing values occur. This works
well if the missing values are concentrated into a few samples. If we have, for
example, a data set with 30 variables and 500 samples and there are 20 missing
values populating only 3 samples, it might be vise to remove these three samples
from our data before the analysis. This strategy is often used by the general statistical
packages and it is usually called the "case-wise deletion".

If the missing values are, on the other hand, concentrated into a few variables
and "we can live without these", we might remove the variables from our dataset.
Such a situation often occurrs when we deal with data representing chemical
analyses. If "every thinkable" cation type concentration was measured, there is
usually a strong correlation between them. If we know values of cadmium
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concentration in the air deposits, we can usually predict reasonably well the
concentration of mercury (although this depends on the type of the pollution source).
Strong correlation between these two characteristics then implies that we can usually
do reasonably well with only one of these variables. So, if we have a lot of missing
values in, say, Cd concentrations, it might be best to drop it from the data.

The two methods of handling missing values described above might seem
rather crude, because we lose so much of our results that we often collected at a high
expense. Indeed, there are various "imputation methods". The simplest one is to take
the average value of the variable (calculated, of course, only from the samples where
the value is not missing) and replace the missing values with it. Another, more
sophisticated one, is to build a (multiple) regression model, using samples without
missing values, for predicting the missing value of the response variable for samples,
where the selected predictors' values are not missing. This way, we might fill-in all
the holes in our data table, without deleting any sample or variable. Yet, we are
deceiving ourselves - we only duplicate the information we have. The degrees of
freedom we lost initially cannot be recovered. If we then use such supplemented data
with a statistical test, this test has erroneous idea about the number of degrees of
freedom (number of independent observations in our data) supporting the conclusion
made. Therefore the significance level estimates are not quite correct (they are "over-
optimistic"). We can alleviate this problem partially by decreasing statistical weight
for the samples where missing values were estimated using one or another method.
The calculation is quite simple: in a dataset with 20 variables, a sample with missing
values replaced for 5 variables gets weight 0.75 (=1.00 - 5/20). Nevertheless, this
solution is not perfect. If we work with only a subset of the variables (like during
forward selection of explanatory variables), the samples with any variable being
imputed carry the penalty even if the imputed variables are not used, at the end.

1.7. Importing data from spreadsheets - CanoImp program

The preparation of the input data for the multivariate analyses was always the biggest
obstacle to their effective use. In the older versions of the CANOCO program, one
had to understand to the overly complicated and unforgiving format of the data files
which was based on the requirements of the FORTRAN programming language used
to create the CANOCO program. The version 4.0 of CANOCO alleviates this
problem by two alternative mechanisms. First, there is now a simple format with
a minimum requirements as to the file contents. Second, probably more important
improvement is the new, easy way to transform data stored in the spreadsheets into
the strict CANOCO formats. In this section, we will demonstrate how to use the
WCanoImp program, serving for this purpose.

We must start with the data in your spreadsheet program. While the majority
of users will use the Microsoft Excel program, the described procedure is applicable
to any other spreadsheet program running under Microsoft Windows. If the data are
stored in a relational database (Oracle, FoxBase, Access, etc.) we can use the
facilities of our spreadsheet program to first import the data there. In the spreadsheet,
we must arrange our data into rectangular structure, as laid out by the spreadsheet
grid. In the default layout, the individual samples correspond to the rows while the
individual spreadsheet columns represent the variables. In addition, we have a simple
heading for both rows and columns: the first row (except the empty upper left corner)
contains names of variables, while the first column contains names of the individual
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samples. Use of heading(s) is optional, WCanoImp program is able to generate
simple names there. If using the heading row and/or column, we must observe
limitation imposed by the CANOCO program. The names cannot have more than
eight characters and also the character set is somewhat limited: the most safe strategy
is to use only the basic English letters, digits, hyphen and space. Nevertheless,
WCanoImp replaces prohibited characters by a dot and also shortens names longer
than the eight character positions. But we can lose uniqueness (and interpretability)
of our names in such a case, so it's better to take this limitation into account from the
very beginning.

In the remaining cells of the spreadsheet must be only the numbers (whole or
decimal) or they must be empty. No coding using other kind of characters is allowed.
Qualitative variables ("factors") must be coded for CANOCO program using a set of
"dummy variables" - see the section 2.6 for more details.

After we have our data matrix ready in the spreadsheet program, we select
this rectangular matrix (e.g. using the mouse pointer) and copy its contents to the
Windows Clipboard. WCanoImp takes this data from the Clipboard, determines its
properties (range of values, number of decimal digits etc) and allows us to create new
data file containing these values but conforming to the one of two CANOCO data
file formats. It is now hopefully clear that the above-described requirements
concerning format of the data in spreadsheet program apply only to the rectangle
being copied to the Clipboard. Outside of it, we can place whatever values, graphs or
objects we like.

After the data were placed on the Clipboard or even a long time before that
moment, we must start the WCanoImp program. It is accessible from the Canoco for
Windows program menu (Start/Programs/[Canoco for Windows folder]). This
import utility has easy user interface represented chiefly by one dialog box, displayed
below:

Figure 1-3 The main window of the WCanoImp program.
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The upper part of the dialog box contains a short version of the instructions
provided here. As we already have the data on the Clipboard, we must now look at
the WCanoImp options to check if they are appropriate for our situation. The first
option (Each column is a Sample) applies only if we have our matrix transposed in
respect to the form described above. This might be useful if we do not have many
samples (as for example MS Excel limits number of columns to 256) but we have
a high number of variables. If we do not have names of samples in the first column,
we must check the second checkbox (i.e. ask to Generate labels for: ... Samples),
similarly we check the third checkbox if the first row in the selected spreadsheet
rectangle corresponds to the values in the first sample, not to the names of the
variables. Last checkbox (Save in Condensed Format) governs the actual format
used when creating data file. Unless we worry too much about the hard disc space, it
does not matter what we select here (the results of the statistical methods should be
identical, whatever format we choose here).

After we made sure the selected options are correct, we can proceed by
clicking the Save button. We must first specify the name of the file to be generated
and the place (disc letter and directory) where it will be stored. WCanoImp then
requests a simple description (one line of ASCII text) for the dataset being generated.
This one line appears then in the analysis output and remind us what kind of data we
were using. A default text is suggested in the case we do not care about this feature.
WCanoImp then writes the file and informs us about the successfull creation with
a simple dialog box.

1.8. CANOCO Full format of data files

The previous section demonstrated how simple is to create CANOCO data files from
our spreadsheet data. In an ideal world, we would never care what the data files
created by the WCanoImp program contain. Sadly, CANOCO users often do not live
in that ideal world. Sometimes we cannot use the spreadsheet and therefore we need
to create data files without the WCanoImp assistance. This happens, for example, if
we have more than 255 species and 255 samples at the same time. In such situation,
the simple methodology described above is insufficient. If we can create the TAB-
separated values format file, we can use the command-line version of the WCanoImp
program, named CanoImp, which is able to process data with substantially higher
number of columns than 255. In fact, even the WCanoImp program is able to work
with more columns, so if you have a spreadsheet program supporting a higher
number of columns, you can stay in the realm of the more user-friendly Windows
program interface (e.g. Quattro for Windows program used to allow higher number
of columns than Microsoft Excel).

Yet in other cases, we must either write the CANOCO data files "in hand" or
we need to write programs converting between some customary format and the
CANOCO formats. Therefore, we need to have an idea of the rules governing
contents of these data files. We start first with the specification of the so-called full
format.
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WCanoImp produced data file
(I5,1X,21F3.0)
21
----1---1--1--0--1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

...
48 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PhosphatBenlate Year94 Year95 Year98 B01 B02 B03 B04 B05
B06 B07 B08 B09 B10 B11 B12 B13 B14 B15
B16
PD01 PD02 PD03 PD04 PD05 PD06 PD07 PD08 PD09 PD10
PD11 PD12 PD13 PD14 PD15 PD16 C01 C02 C03 C04
...

Figure 1-4 Part of a CANOCO data file in the full format. The hyphens in the first data line
show the presence of the space characters and should not be present in the actual file

The first three lines in the CANOCO data files have a similar meaning for
both the full and condensed formats. The first line contains a short textual description
of the data file, with the maximum length of 80 characters. Second line contains the
exact description of the format for the data values that occur in the file, starting from
the fourth line. The format line is described in more detail in the section 1.10. The
third line contains a single number, but its meaning differs between full and
condensed formats. In the full format, it gives the total number of variables in the
data matrix.

Generally, a file in the full format displays the whole data matrix, including
the zero values as well. Therefore, it is more simple to understand when we look at it,
but it is much more tedious to create, given that majority of the values for
community data will be zeros.

In full format, each sample is represented by a fixed number of lines - one
line per sample is used in the above example. There we have 21 variables. First
sample (on the fourth row) starts with its number (1) followed by another 21 values.
We note that number of spaces between the values is identical for all the rows, the
data fields are well aligned on their right margins. Each field takes a specified
number of positions ("columns") as specified in the format line. If the number of
variables we have would not fit into one line (which should be shorter than 127
columns), we can use additional lines per sample. This is then indicated in the format
description in the format line by the slash character. The last sample in the data is
followed by a "dummy" sample, identified by its number being zero.

Then the names ("labels") for variables follow, which have very strict format:
each name takes exactly eight positions (left-padded or right-padded with spaces, as
necessary) and there are exactly 10 names per row (except the last row which may
not be completely filled). Note that the required number of entries can be calculated
from the number of variables, given at the third row in the condensed format. In our
example, there are two completely full rows of labels, followed by a third one,
containing only one name.

The names of the samples follow the block with variable names. Here the
maximum sample number present in the data file determines necessary number of
entries. Even if some indices between 1 and this maximum number are missing, the
corresponding positions in the names block must be reserved for them.
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We should note that it is not a good idea to use TAB characters in the data file
- these are still counted as one column by the CANOCO program reading the data,
yet they are visually represented by several spaces in any text editor. Also we should
note that if creating the data files "by hand", we should not use any editor inserting
format information into the document files (like Microsoft Word or Wordperfect
programs). The Notepad utility is the easiest software to use when creating the data
files in CANOCO format.

1.9. CANOCO Condensed format

The condensed format is most useful for sparse community data. The file with this
format contains only the nonzero entries. Therefore, each value must be introduced
by the index specifying to which variable this value belongs.
WCanoImp produced data file
(I5,1X,8(I6,F3.0))
8
----1-----23--1----25-10----36--3 41 4 53 5 57 3 70 5 85
6

1 89 70 100 1 102 1 115 2 121 1
2 11 1 26 1 38 5 42 20 50 1 55 30 57 7 58

5
2 62 2 69 1 70 5 74 1 77 1 86 7 87 2 89

30
...

79 131 15
0

TanaVulgSeneAquaAvenPratLoliMultSalxPurpErioAnguStelPaluSphagnumCarxCaneSalx
Auri
...
SangOffiCalaArunGlycFlui
PRESEK SATLAV CERLK CERJIH CERTOP CERSEV ROZ13 ROZ24 ROZC5
ROZR10
...

Figure 1-5 Part of a CANOCO data file in the condensed format. The hyphens in the first data
line show the presence of the space characters and should not be present in the actual file

In this format, the number of rows needed to record all values varies from
sample to sample. Therefore, each line starts with a sample index and also the format
line describes the format of one line only. In the example displayed in the Figure 1-5,
the first sample is recorded in two rows and this sample contains eight species. For
example, a species with the index 23 has the value 1.0, while a species with the index
25 has value 10. By checking the maximum species index, we can find that there is
a total of 131 species in the data. The value in the third line of the file with
condensed format does not specify this number, but rather the maximum number of
the "variable index"-"variable value" pairs ("couplets") in a single line. The last
sample is again followed by a "dummy" sample with zero index. The format of the
two blocks with names of variables and samples is identical to that of the full format
files.

1.10. Format line

The following example contains all the important parts of a format line specification
and refers to a file in the condensed format.

(I5,1X,8(I6,F3.0))
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First, note that the whole format specification must be enclosed in the
parentheses. There are three letters used in this example (namely I, F, and X) and
generally, these are sufficient for describing any kind of contents a condensed format
might have. In the full format, the additional symbol for line-break (new-line) is the
slash character (/).

The format specifier using letter I is used to refer to indices. These are used
for sample numbers in both condensed and full formats and for the species numbers,
used only in the condensed format. Therefore, if you count number of I letters in the
format specification, you know what format this file has: if there is just a one I, it is
a full format file. If there are two or more Is, this is a condensed format file. If there
is no I, this is a wrong format specification. But this might also happen for the free
format files or if the CANOCO analysis results are used as an input for another
analysis (see section 10.2). The I format specifier has the Iw form, where w is
followed by a number, giving width of the index field in the data file, reserved for it.
This is the number of columns this index value uses. If the number of digits needed
to describe the integral value is shorter than this width, the number is right-aligned,
padded with space characters on its left side.

The actual data values use the Fw.d format specifiers, i.e. the F letter
followed by two numbers, separated with a dot. The first number gives the total
width of the data field in the file (number of columns), while the other gives the
width of the part after the decimal point (if larger than zero). The values are in the
field of specified width right-aligned, padded with the spaces to their left. Therefore,
if the format specifier says F5.2, we know that the two rightmost columns contain
the first two decimal digits after the decimal point. In the third column from the right
side is the decimal point. This leaves up to two columns for the whole part of the
value. If we have values larger than 9.99, we would fill up the value field completely,
so we would not have any space visually separating this field from the previous one.
We can either increase the w part of the F descriptor by one or we can insert a X
specifier.

The nX specifier tells us that n columns contain spaces and should be,
therefore, skipped. An alternative way how to write it is to revert the position of the
width-specifying number and the X letter (Xn).

So we can finally interpret the format line example given above. The first five
columns contains the sample number. Remember that this number must be right-
aligned, so a sample number 1 must be written as four spaces followed by the digit
'1'. Sixth column should contain space character and is skipped by CANOCO while
reading the data. The next value preceding included pair of parentheses is a repeat
specifier, saying that the format described inside the parentheses (species index with
a width of six columns followed by a data value taking three columns) is repeated
eight times. In the case of the condensed format there might be, in fact, fewer than
eight pairs of "species index" - "species value" on a line. Imagine that we have
a sample with ten species present. This sample will be represented (using our sample
format) on two lines with the first line completely full and the second line containing
only two pairs.

As we mentioned in section 1.8, a sample in a full format data file is represented by
a fixed number of lines. The format specification on its second line therefore
contains description of all the lines forming a single sample. There is only one I field
referring to the sample number (this is the I descriptor the format specification starts
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with), the remaining descriptors give the positions of individual fields representing
the values of all the variables. The slash character is used to specify where CANOCO
needs to progress to the next line while reading the data file.

1.11. Transformation of species data

As we show in the Chapter 2, the ordination methods find the axes representing
regression predictors, optimal in some sense for predicting the values of the response
variables, i.e. the values in the species data. Therefore, the problem of selecting
transformation for these variables is rather similar to the one we would have to solve
if using any of the species as a response variable in the (multiple) regression method.
The one additional restriction is the need to specify an identical data transformation
for all the response variables ("species"). In the unimodal (weighted averaging)
ordination methods (see the section 2.2), the data values cannot be negative and this
imposes further restriction on the outcome of a potential transformation.

This restriction is particularly important in the case of the log transformation.
Logarithm of 1.0 is zero and logarithms of values between 0 and 1 are negative
values. Therefore, CANOCO provides a flexible log-transformation formula:

y' = log(A*y + C)

We should specify the values of A and C so that after these are applied to our data
values (y), the result is always greater or equal to 1.0. The default values of both A
and C are equal to 1.0 which maps neatly the zero values again to zeros and other
values are positive. Nevertheless, if our original values are small (say, in range 0.0 to
0.1), the shift caused by adding the relatively large value of 1.0 dominates the
resulting structure of the data matrix. We adjust the transformation here by
increasing the value of A, e.g. to 10.0 in our example. But the default log
transformation (i.e. log(y+1)) works well for the percentages data on the 0-100 scale,
for example.

The question when to apply a log transformation and when to stay on the
original scale is not easy to answer and there are almost as many answers as there are
statisticians. Personally, I do not think much about distributional properties, at least
not in the sense of comparing frequency histograms of my variables with the "ideal"
Gaussian (Normal) distribution. I rather try to work-out whether to stay on the
original scale or to log-transform using the semantics of the problem I am trying to
address. As stated above, the ordination methods can be viewed as an extension of
the multiple regression methods, so let me illustrate this approach in the regression
context. Here we might try to predict the abundance of a particular species in
a sample based on the values of one or more predictors (environmental variables
and/or ordination axes in the context of the ordination methods). Now, we can
formulate the question addressed by such a regression model (let us assume just
a single predictor variable for simplicity) like "How the average value of the species
Y changes with the change of the value of the environmental variable X by one
unit?". If neither the response variable nor the predictors are log transformed, our
answer can take the form "The value of species Y increases by B if the value of
environmental variable X increases by one measurement unit". Of course, B is the
regression coefficient of the linear model equation Y = B0 + B*X + E. But in the
other cases we might prefer to see the appropriate style of the answer to be "If value
of environmental variable X increases by one, the average abundance of the species
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increases by ten percent". Alternatively, we can say, "the abundance increases 1.10
times". Here we are thinking on a multiplicative scale, which is not assumed by the
linear regression model. In such a situation, I would log transform the response
variable.

Similarly, if we tend to speak about an effect of the the environmental
variable value change in a multiplicative way, this predictor variable should be log-
transformed. As an example, if we would use the concentration of nitrate ions in soil
solution as a predictor, we would not like our model to address a question what
happens if the concentration increases by 1 mmol/l. In such case, there would be no
difference in change from 1 to 2 compared with a change from 20 to 21.

The plant community composition data are often collected on a semi-
quantitative estimation scale and the Braun-Blanquet scale with seven levels (r, +, 1,
2, 3, 4, 5) is a typical example. Such a scale is often quantified in the spreadsheets
using corresponding ordinal levels (from 1 to 7, in this case). Note that this coding
already implies a log-like transformation because the actual cover/abundance
differences between the successive levels are more or less increasing. An alternative
approach to use of such estimates in the data analysis is to replace them by the
assumed centers of the corresponding range of percentage cover. But doing so, we
find a problem with the r and + levels because these are based more on the
abundance (number of individuals) of the species rather than on its estimate cover.
Nevertheless, using the very rough replacements like 0.1 for r and 0.5 for + rarely
harms the analysis (compared to the alternative solutions).

Another useful transformation available in CANOCO is the square-root
transformation. This might be the best transformation to apply to the count data
(number of specimens of individual species collected in a soil trap, number of
individuals of various ant species passing over a marked "count line", etc.) but the
log transformation is doing well with these data, too.

The console version of CANOCO 4.0 provides also the rather general "linear
piecewise transformation" which allows us to approximate the more complicated
transformation functions using a poly-line with defined coordinates of the "knots".
This general transformation is not present in the Windows version of CANOCO,
however.

Additionally, if we need any kind of transformation which is not provided by
the CANOCO software, we might do it in our spreadsheet software and export the
transformed data into the CANOCO format. This is particularly useful in the case our
"species data" do not describe community composition but something like the
chemical and physical soil properties. In such a case, the variables have different
units of measurement and different transformations might be appropriate for different
variables.

1.12. Transformation of explanatory variables

Because the explanatory variables ("environmental variables" and "covariables" in
CANOCO terminology) are assumed not to have an uniform scale and we need to
select an appropriate transformation (including the frequent "no transformation"
choice) individually for each such variable. But CANOCO does not provide this
feature so any transformations on the explanatory variables must be done before the
data is exported into a CANOCO compatible data file.
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Nevertheless, after CANOCO reads in the environmental variables and/or
covariables, it transforms them all to achieve their zero average and unit variance
(this procedure is often called normalization).
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2. Methods of gradient analysis

Introductory terminological note: The term gradient analysis is used here in the
broad sense, for any method attempting to relate the species composition to the
(measured or hypothetical) environmental gradients. The term environmental
variables is used (traditionally, as in CANOCO) for any explanatory variables. The
quantified species composition (the explained variables) is in concordance with the
Central-European tradition called relevé. The term ordination is reserved here for
a subset of methods of gradient analysis.

Often the methods for the analysis of species composition are divided into
gradient analysis (ordination) and classification. Traditionally, the classification
methods are connected with the discontinuum (or vegetation unit) approach or
sometimes even with the Clemensian organismal approach, whereas the methods of
the gradient analysis are connected with the continuum concept, or with the
individualistic concept of (plant) communities. Whereas this might (partially) reflect
the history of the methods, this distinction is no longer valid. The methods are
complementary and their use depends mainly on the purpose of the study. For
example, in the vegetation mapping the classification is necessary. Even if there are
no distinct boundaries between the adjacent vegetation types, we have to cut the
continuum and to create distinct vegetation units for mapping purposes. The
ordination methods can help to find repeatable vegetation patterns, discontinuities in
the species composition, or to show the transitional types etc. and are now used even
in the phytosociological studies.

2.1. Techniques of gradient analysis

The Table 2-1 provides an overview of the problems with try to solve with our data
using one or another kind of statistical methods. The categories differ mainly by the
type of the information (availability of the explanatory = environmental variables,
and of the response variables = species) we have available.

Further, we could add the partial ordination and partial constrained
ordination entries to the table, where we have beside the primary explanatory
variables the so-called covariables (=covariates). In the partial analyses, we first
extract the dependence of the species composition on those covariables and then
perform the (constrained) ordination.

The environmental variables and the covariables can be both quantitative and
categorial ones.
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Data, I have

no. of
envir. var

no. of
species

Apriori
knowledge
of species-

environment
relationships

I will use I will get

1, n 1 NO Regression

Dependence of the species on environment

none n YES Calibration Estimates of environmental values

none n NO Ordination

Axes of variability in species composition (can be –
should be - aposteriori related to measured
environmental variables, if available)

1, n n NO Constrained
ordination

Variability in species composition explained by
environmental variables
Relationship of environmental variables to species
axes

Table 2-1

2.2. Models of species response to environmental gradients

Two types of the model of the species response to an environmental gradient are
used: the model of a linear response and of an unimodal response. The linear
response is the simplest approximation, the unimodal response expects that the
species has an optimum on an environmental gradient.



24

Figure 2-1 Linear approximation of an unimodal response curve over a short part of the
gradient

Over a short gradient, a linear approximation of any function (including the unimodal
one) works well (Figure 2-1).

Figure 2-2 Linear approximation of an unimodal response curve over a long part of the gradient

Over a long gradient, the approximation by the linear function is poor (Figure 2-2). It
should be noted that even the unimodal response is a simplification: in reality, the
response is seldom symmetric, and also more complicated response shapes are found
(e.g. bimodal ones).

2.3. Estimating species optimum by the weighted averaging
method

Linear response is usually fitted by the classical methods of the (least squares)
regression. For the unimodal response model, the simplest way to estimate the
species optimum is by calculating the weighted average of the environmental values
where the species is found. The species importance values (abundances) are used as
weights in calculating the average:

�

� ×=
Abund

AbundEnv
WA
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where Env is the environmental value, and Abund is abundance of the species in the
corresponding sample.┼ The method of the weighted averaging is reasonably good
when the whole range of a species distribution is covered by the samples (Figure
2-3).
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Figure 2-3 Example of the range where the complete response curve is covered

Complete range covered:
Environmental value Species

abundance
product

0 0.1 0
20 0.5 10
40 2.0 80
60 4.2 252
80 2.0 160
100 0.5 50
120 0.1 12
Total 9.4 564

WA
Env Abund

Abund
=

×
= =�

�
564 9 4 60/ .

On the contrary, when only part of the range is covered, the estimate is biased:

Only part of the range covered:
Environmental. value Species

abundance
product

60 4.2 252
80 2.0 160
100 0.5 50
120 0.1 12
Total 6.8 472

WA
Env Abund

Abund
=

×
= =�

�
472 6 8 69 4/ . .

The longer the axis, the more species will have their optima estimated correctly.

┼ Another possibility is to estimate directly the parameters of the unimodal curve, but this option is
more complicated and not suitable for the simultaneous calculations that are usually used in the
ordination methods.
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The techniques based on the linear response model are suitable for
homogeneous data sets, the weighted averaging techniques are suitable for more
heterogeneous data.

2.4. Ordinations

The problem of an unconstrained ordination can be formulated in several ways:

1. Find the configuration of samples in the ordination space so that the distances of
samples in this space correspond best to the dissimilarities of their species
composition. This is explicitly done by the non-metric multidimensional scaling
(NMDS).

2. Find „latent“ variable(s) (= ordination axes), for which the total fit of dependence
of all the species will be the best. This approach requires the model of species
response to the variables to be explicitly specified: linear response for linear
methods, unimodal response for weighted averaging (the explicit „Gaussian
ordinations“ are not commonly used for computational problems). In linear methods,
the sample score is a linear combination (weighted sum) of the species scores. In the
weighted averaging methods the sample score is a weighted average of the species
scores (after some rescaling).

Note: the weighted averaging contains implicit standardization by both
samples and species. On the contrary, for the linear methods, we can select
standardized and non-standardized versions.

3. Let us consider the samples to be points in a multidimensional space, where
species are the axes and position of each sample is given by the corresponding
species abundance. Then the goal of ordination is to find a projection of the
multidimensional space into a space with reduced dimensionality that will result in
minimum distortion of the spatial relationships. Note that the result is dependent on
how we define the “minimum distortion”.

It should be noted that the various formulations could lead to the same
solution. For example, the principal component analysis can be formulated in any of
the above manners.

2.5. Constrained ordinations

The constrained ordinations can be best explained within the framework of the
ordinations defined as a search for the best explanatory variables (i.e. the problem
formulation 2 in the previous paragraph). Whereas in the unconstrained ordinations
we search for any variable that explains best the species composition (and this
variable is taken as the ordination axis), in the constrained ordinations the ordination
axes are weighted sums of environmental variables. Consequently, the less
environmental variables we have, the stricter is the constraint. If the number of
environmental variables is greater than the number of samples minus 1, then the
ordination is unconstrained.

The unconstrained ordination axes correspond to the directions of the greatest
variability within the data set. The constrained ordination axes correspond to the
directions of the greatest variability of the data set that can be explained by the
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environmental variables. The number of constrained axes cannot be higher than the
number of environmental variables.

2.6. Coding environmental variables

The environmental variables can be either quantitative (pH, elevation, humidity) or
qualitative (categorial or categorical). The categorial variables with more than two
categories are coded as several dummy variables; the dummy variable' values equal
either one or zero. Suppose we have five plots, plots 1 and 2 being on limestone,
plots 3 and 4 on granite and plot 5 on basalt. The bedrock will be characterized by
three environmental variables (limestone, granite, basalt) as follows:

limestone granite basalt

Plot 1 1 0 0

Plot 2 1 0 0

Plot 3 0 1 0

Plot 4 0 1 0

Plot 5 0 0 1

The variable basalt is not necessary, as it is a linear combination of the
previous two: basalt = 1 - limestone - granite. However, it is useful to use this
category for further graphing.

2.7. Basic techniques

Four basic ordination techniques exist, based on the underlying species
response model and whether the ordination is constrained or unconstrained (Ter
Braak & Prentice, 1998):

Linear methods Weighted averaging

unconstrained
Principal Components

Analysis (PCA)
Correspondence Analysis

(CA)

constrained
Redundancy Analysis

(RDA)

Canonical
Correspondence Analysis

(CCA)
Table 2-2

For the weighted averaging methods, the detrended versions exist (i.e.
Detrended Correspondence Analysis, DCA, the famous DECORANA, and
Detrended Canonical Correspondence Analysis, DCCA, see section 3.5). For all the
methods, the partial analyses exist. In partial analyses, the effect of covariables is
first partialled out and the analysis is then performed on the remaining variability.

2.8. Ordination diagrams

The results of an ordination are usually displayed as the ordination diagrams. Plots
(samples) are displayed by points (symbols) in all the methods. Species are shown by
the arrows in the linear methods (the direction, in which the species abundance
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increases) and by the points (symbols) in the weighted averaging methods (the
species optimum). The quantitative environmental variables are shown by arrows
(direction, in which the value of environmental variable increases). For qualitative
environmental variables, the centroids are shown for individual categories (the
centroid of the plots, where the category is present).

PCA CA

RDA CCA

Figure 2-4: Examples of typical ordination diagrams. Analyses of data on the
representation of Ficus species in forests of varying successional age in Papua New
Guinea. The species are labeled as follows: F. bernaysii - BER , F. botryocarpa -
BOT, F. conocephalifolia - CON, F. copiosa - COP, F. damaropsis - DAM, F.
hispidoides - HIS, F. nodosa - NOD, F. phaeosyce - PHA, F. pungens -PUN, F.
septica - SEP, F. trachypison - TRA, F. variegata - VAR, and F. wassa - WAS. The
quantitative environmental variables are the slope and successional age, the
qualitative is the presence of a small stream (NoStream, Stream). Relevés are
displayed as open circles.

2.9. Two approaches

If you have both the environmental data and the species composition (relevés), you
can both calculate the unconstrained ordination first and then calculate regression of
ordination axes on the measured environmental variables (i.e. to project the
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environmental variables into the ordination diagram) or you can calculate directly the
constrained ordination. The approaches are complementary and should be used
both! By calculating the unconstrained ordination first you surely do not miss the
main part of the variability in species composition, but you could miss the part of
variability that is related to the measured environmental variables. By calculating the
constrained ordination, you surely do not miss the main part of the variability
explained by the environmental variables, but you could miss the main part of
a variability that is not related to the measured environmental variables.

Be carefull to always specify the method of the analysis. From an ordination
diagram you can tell whether a linear or unimodal analysis was used but you cannot
distinguish between the constrained and unconstrained ordinations.

The hybrid analyses represent a "hybrid" between the constrained and the
unconstrained ordination methods. In the standard constrained ordinations, there are
as many constrained axes as there are independent explanatory variables and only the
additional ordination axes are uncostrained. In the hybrid analysis, only a pre-
specified number of canonical axes is calculated and any additional ordination axes
are unconstrained. In this way, we can specify the dimensionality of the solution of
the constrained ordination model.

2.10. Partial analyses

Sometimes, we need to partial-out first the variability, which can be explained by one
set of explanatory variables, and then to analyse the remaining variability (i.e. to
perform the analysis on the residual variation). This is done by the partial analyses,
where we extract first the variability, which can be explained by the covariables (i.e.
the variables effect of which should be partialled out); then we perform the
(constrained) ordination. The covariables are often (continuous or categorical)
variables, effect of which is uninteresting, e.g. the blocks in the experimental
designs. When we have more explanatory variables, then performing several
analyses, with one of the variables being the explanatory variable and the rest acting
as the covariables, enables us to test the partial effects (analogously to the effects of
partial regression coefficients in a multiple regression).

2.11. Testing the significance of relationships with environmental
variables

In the ordinary statistical test, the value of the statistics calculated from the data is
compared with the expected distribution of the statistics under the null hypothesis
tested and based on this comparison, we estimate the probability of obtaining results
as different from the null hypotheses or even more extreme than our data are. The
distribution of the test statistics is derived from the assumption about the distribution
of the original data (i.e. why we expect the normality of the response residuals in
least square regressions). In CANOCO, the distribution of the test statistics (F-ratio
in the latest version of CANOCO is a multivariate counterpart of the ordinary F-
ratio, the eigenvalue was used in the previous versions) under the null hypothesis of
independence is not known; the distribution depends on the number of environmental
variables, on their correlation structure, on the distribution of the species abundances
etc. However, the distribution can be simulated and this is used in the Monte Carlo
permutation test.
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In this test, the distribution of the test statistic under the null hypothesis is
obtained in the following way: The null hypothesis is that the response (the species
composition) is independent of the environmental variables. If this is true, then it
does not matter which set of explanatory variables is assigned to which relevé.
Consequently, the values of the environmental variables are randomly assigned to the
individual relevés and the value of the test statistics is calculated. In this way, both
the distribution of the response variables and the correlation structure of the
explanatory variables remain the same in the real data and in the null hypothesis
simulated data. The resulting significance level (probability) is calculated as

follows: P
m

n
= +

+
1

1
; where m is the number of permutations where the test statistics

was higher in random permutation than in the original data, and n is total number of
permutations. This test is completely distribution free: this means that it does not
depend on any assumption about the distribution of the species abundance values.
The permutation scheme can be „customized“ according to the experimental design
used. This is the basic version of the Monte Carlo permutation test, more
sophisticated approaches are used in CANOCO, particularly with respect to the use
of covariables – see the Canoco for Windows manual (Ter Braak & Šmilauer, 1998).

2.12. Simple example of Monte Carlo permutation test for
significance of correlation

We know the heights of 5 plants and content of the nitrogen in soil, where they were
grown. The relationship is characterized by a correlation coefficient. Under some
assumptions (two-dimensional normality of the data), we know the distribution of the
correlation coefficient values under the null hypothesis of independence. Let us
assume that we are not able to get this distribution (e.g. the normality is violated).
We can simulate this distribution by randomly assigning the nitrogen values to the
plant heights. We construct many random permutations and for each we calculate the
correlation coefficient with the plant height. As the nitrogen values were assigned
randomly to the plant heights, the distribution of the correlation coefficients
corresponds to the null hypothesis of independence.

Plant height Nitrogen (in
data)

1-st
permutation

2-nd
permutation

3-rd
permutation

4-th
permutation

5-th
etc

5 3 3 8 5 5

7 5 8 5 5 8

6 5 4 4 3 4

10 8 5 3 8 5

3 4 5 5 4 3

Correlation 0.878 0.258 -0.568 0.774 0.465 0.###

Significance of correlation=
1 + no. of permutations where (r>0.878)

1 + total number of permutations
for the one-tailed test or
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1 + no. of permutations where (|r|>0.878)
1 + total number of permutations

for the two-tailed test.
Note, that the F-test as used in ANOVA (and similarly the F-ratio used in the
CANOCO program) are the one-sided tests.
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3. Using the Canoco for Windows 4.0 package

3.1. Overview of the package

The Canoco for Windows package is composed of several separate programs and
their role during the process of the analysis of ecological data and the interpretation
of the results is summarized in this section. Following sections then deal with some
typical usage issues. As a whole, this chapter is not a replacement for the
documentation, distributed with the Canoco for Windows package.

Canoco for Windows 4.0

This is the central piece of the package. Here we specify the data we want to use,
specify the ordination model and testing options. We can also select subsets of the
explained and explanatory variables to use in the analysis or change the weights for
the individual samples.

Canoco for Windows package allows us to analyse data sets with up to 25
000 samples, 5000 species, and 750 environmental variables plus 1000 covariables.
There are further restrictions on the number of data values. For species data, this
restriction concerns non-zero values only, i.e. the absences are excluded, as these are
not stored by the program.

Canoco for Windows allows one to use quite a wide range of the ordination
methods. The central ones are the linear methods (PCA and RDA) and unimodal
methods (DCA and CCA), but based on them, we can use CANOCO to apply other
methods like the discriminant analysis (CVA) or the metric multi-dimensional
scaling (principal coordinates analysis, PCoA) to our data set. Only the non-metric
multidimensional scaling is missing from the list.

CANOCO 4.0

This program can be used as a less user-friendly, but slightly more powerful
alternative to the Canoco for Windows program. It represents non-graphical, console
(with the text-only interface) version of this software. The user interface is identical
to the previous versions of the CANOCO program (namely versions 3.x), but the
functionality of the original program was extended and in few places exceeds even
the user friendly form of the version 4.0.

The console version is much less interactive than the Windows version - if we
make a mistake and specify an incorrect option, there is no way back to the wrongly
answered question. We can only terminate the program.

Nevertheless, there are few "extras" in the console version functionality. In
my opinion, the only one worth of mentioning is the acceptance of "irregular" design
specifications. You can have, for example, data repeatedly collected from the
permanent plots distributed over three localities. If the data were collected different
number of years, there is no way to specify this design to the Windows' version of
the package so as to assure correct permutation restrictions during the Monte Carlo
permutation test. The console version allows to specify the arrangement of samples
(in terms of special and temporal structure and / or of the general split-plot design)
for each block of samples independently.
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Another advantage of the console version is its ability to read the analysis
specification (normally entered by the user as answers to individual program'
questions) from a "batch" file. Therefore, it is possible to programatically generate
such batch files and run few to many analyses at the same time. This option is
obviously an advantage only for experienced users.

WCanoImp and CanoImp.exe

The functionality of the WCanoImp program was already described in the section
1.7. The one substantial deficiency of this small, user-friendly piece of software is its
limitation by the capacity of the Windows’ Clipboard. Note that this is not such
a limitation as it used to be for the Microsoft Windows 3.1 and 3.11. More
importantly, we are limited by the capacity of the sheet of our spreadsheet program.
For the Microsoft Excel, we cannot have more than 255 columns of data, so either
we must limit ourselves to at most 255 variables or at most 255 samples. The other
dimension is more forgiving – 65536 rows in the Microsoft Excel 97 version.

If our data does not fit into those limits, we can either fiddle around with
splitting the table, exporting parts and merging the resulting CANOCO files (not
a trivial exercise) or we can use the console (command line) form of the WCanoImp
program – program canoimp.exe. Both programs have the same purpose and the
same functionality, but there are two important differences. The first difference is
that the input data must be stored in a text file. The content of the file is the same as
what the spreadsheet programs place onto the Clipboard. This is a textual
representation of the spreadsheet cells, with transitions between the columns marked
by the TAB characters and the transition between rows marked by the new-line
characters. So the simplest way to produce such input file for the canoimp.exe
program is to proceed as if using the WCanoImp program, up to the point the data
were just copied to the Clipboard. From there, we switch to WordPad program (in
Windows 9x) or to Notepad program (in Windows NT 4.x and Windows 2000),
create a new document and select the Edit/Paste command. Then we save the
document as an ASCII file (cannot be done otherwise in Notepad, but WordPad
supports other formats, as well). Alternatively, we can save our sheet from the
spreadsheet program using the File/Save as… command and selecting format usually
called something like Text file (Tab separated). Note that this works flawlessly only
if the data table is the only contents of the spreadsheet document.

The second difference between the WCanoImp utility and the canoimp.exe
program is that the options we selected in the WCanoImp main window must be
passed (together with the name of the input file and of the desired output file) on the
command line used to invoke the canoimp program. So, a typical execution of the
program from the command prompt looks similarly to this example:

d:\canoco\canoimp.exe -C -P inputdta.txt output.dta

where the –C option means output in the condensed format, while the –P option
means a transposition of the input data (i.e. rows represent variables in the input text
file). The TAB-separated format will be read from the inputdta.txt and the CanoImp
will create a new data file (and overwrite any existing file with the same name)
named output.dta in the CANOCO condensed format.

If you want to learn about the exact format of the command line when calling
the canoimp.exe program, you can invoke it without any further parameters (that
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means, also without the names of input and output files). Program then provides
a short output describing the required format of the parameters‘ specification.

CEDIT

Program CEDIT is available with the Canoco for Windows installation program as
an optional component. It is not recommended for installation on the Windows NT
(and Windows 2000) platform, where its flawless installation needs an intimate
knowledge of the operating system, but it is supposed to work from the first start
when installing on the Windows 9x, at least if you install into the default c:\canoco
directory.

Availability of that program is by a special arrangement with its author and,
therefore, no user support in case of any problems is available. If you install it,
however, you get program documentation in a file in the installation directory,
including instructions for its proper setup.

Another disadvantage (in eyes of many users) is its terse, textual interface,
even more cryptic than that available with the console version of the CANOCO
program. But if you enjoy using text editors under UNIX with such kind of interface,
where commands are executed by entering one or few letters from your keyboard
(Emacs being the most famous one), then you will love CEDIT.

Now, for the rest of us, what is the appeal of such program? It is in its
extreme power for performing quite advanced operations on your data that are
already in the CANOCO format. No doubt that most of these operations might be
done (almost) as easily in the Windows spreadsheet programs, yet you do not always
have your data in the appropriate format (particularly the legacy data sets). CEDIT
can transform the variables, merge or split the data files, transpose the data, recode
factors (expanding factor variable into a set of dummy variables) and much more.

CanoDraw 3.1

The CanoDraw 3.1 program is distributed with the Canoco for Windows package and
it is based on the original 3.0 version which was available, as an add-on for the
CANOCO 3.1x software (a “lite” version of the CanoDraw 3.0 was distributed with
each copy of the CANOCO 3.1x program for the PC platform).

There were only few functional changes between the versions 3.0 and 3.1 and
as the original one was published in 1992, it is reflected by its user interface feeling
clumsy by today‘ standards. First, while CanoDraw does not have a textual (console-
like) user interface, it‘s graphics mode is limited to the standard VGA resolution
(640x480 points) and it runs usually only in the full screen mode. But it can be
usually started directly from the Windows environment, so that we can interactively
switch between the Canoco for Windows and CanoDraw on one side, and between
CanoDraw and CanoPost program, when finalizing the look of the produced
diagrams.

CanoDraw concentrates lot of functionality on a small foothold. This is the
reason it is sometimes difficult to use. Besides displaying the simple scattergrams of
ordination scores and providing appropriate mutual rescaling of scores when
preparing so-called biplots and triplots, CanoDraw enables further exploration of our
data based on the ordination results. It provides to this aim a palette of methods,
including generalized linear models, loess smoother model and portraing results of
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these methods with the contour plots. Further, we can combine the ordination data
with geographical coordinates of the individual samples, classify our data into
separate classes and visualize the resulting classification, compare sample scores in
different ordination methods and so on.

As for the output options, CanoDraw supports direct output to several types
of printers, including HP LaserJet – compatible printers, but today users of
CanoDraw 3.1 are advised to save their graphs either in the Adobe Illustrator (AI)
format or in the PostScript (PSC) format which can be further enhanced with the
CanoPost program. While the Adobe Illustrator program provides powerfull platform
for further enhancement of any kind of graphs, here lays its limitation, too. This
program has no idea what an ordination method is: it does not know that the symbols
and arrows in an ordination plot cannot be moved around, in contrast to the labels, or
that the scaling of the vertical axis might not be changed independently of the
horizontal one. Last, but not least, using Adobe Illustrator needs further software
license, while CanoPost is provided with the Canoco for Windows package.
Additionally, AI files can be exported even from the CanoPost, so users do not miss
the handsome features of the Adobe Illustrator program.

CanoPost for Windows 1.0

This program reads files produced by the CanoDraw program and saved in the
PostScript format (usually with the .psc extension). Note that these are valid files in
the PostScript language, so you might print them on a laser printer supporting that
language. But to use them with the CanoPost, you do not need a PostScript printer!
Also, CanoPost is able to read only the PostScript files produced by CanoDraw
program, not any other kind of PostScript files.

CanoPost allows further modification of the graphs, including change of the
text, style for the labels, symbols, line or arrows. Positions of labels can be adjusted
by dragging them around the symbols or arrows their label. The adjustments made to
particular plots can be saved into style sheets, so they can be easily applied to any
other ordination diagrams. Beside the work on individual graphs, CanoPost allows us
to combine several graphs into a single plot.

Adjusted plots may be saved in the CanoPost own format (with the .cps
extension), printed on any raster output device supported by our Windows'
installation or exported as a bitmap (.BMP) file or in the Adobe Illustrator format.
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3.2. Typical analysis workflow when using Canoco for Windows
4.0

Write data into
a spreadsheet

Export data into
Canoco formats with

WCanoImp

Decide about
ordination model

Fit selected ordination
model with Canoco

Explore ordination
results in CanoDraw

Finalize graphs in
CanoPost

Figure 3-1 The simplified workflow in using the Canoco for Windows package
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The Figure 3-1 shows a typical sequence of actions taken when analyzing
multivariate data. We first start with the data sets recorded in a spreadsheet and
export them into CANOCO compatible data files, using the WCanoImp program. In
the Canoco for Windows program, we either create a new CANOCO project or clone
an existing one using the File/Save as... command. Cloning retains all the project
settings and we can change only those that need to be changed. Of course, changing
names of the source data files invalidates choices dependent on them (like the list of
environmental variables to be deleted).

Each project is represented by two windows (views). The Project view
summarizes the most important project properties (e.g. type of the ordination
method, dimensions of the data tables and names of the files the data are stored in).
Additionally, the Project view features a column with buttons providing shortcuts to
the commands most often used when working with the projects: running analysis,
modifying project options, starting the CanoDraw program, saving the analysis log
etc. The Log view records the users' actions on the project and the output provided
during the project analysis. Some of the statistical results provided by the CANOCO
are available only from this log. Other results are stored in the "SOL file", containing
the actual ordination scores. The content of the Log view may be extended by
entering a new text (comments) into the log: the Log view works as a simple text
editor.

We can define the project settings using the Project Setup wizard. This wizard
can be invoked for example by clicking the Options button in the Project view.
CANOCO displays the first page from a sequence of pages containing various pieces
of information the program needs to know to apply an appropriate type of the
ordination method. This sequence is not a static one, the page displayed at a certain
time depends on the choices made in the preceding pages. For example, some of the
options are specific for the linear ordination methods, so these pages are displayed
only if a linear method (PCA or RDA) was chosen. We proceed between the pages
using the Next button. But we might return to the preceding pages using the Back
button. Some of the critical choices to be made with the Setup Wizard are discussed
in more detail later in this chapter. On the last page, the Next button is replaced by
the Finish button. After we click this button, the changes in the options are applied to
the project. If we were defining a new project, CANOCO asks for the name of the
file where the project will be saved.

After the project is defined, the analysis might be performed (the data
analyzed) by clicking the Analyze button in the project view (or, alternatively, by
using the shortcut button from the toolbar or using the menu command). On success,
the results are stored in the solution file (its name was specified on the second Project
Setup wizard page) and additional information is placed into the Log view, where it
might be inspected. In the Log view, we can find a statistical summary for the first
four ordination axes, information on the correlation between the environmental
variables and the ordination axes, indication of the outliers, and the results of the
Monte Carlo permutation tests. Part of this information is essential for performing
certain tasks, but nothing needs to be retained for plotting the ordination diagrams
with the CanoDraw program. CanoDraw needs only the results stored in the solution
file.
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With the CanoDraw program, we can explore the ordination results and
combine them with the information from the original data. Here we define the basic
contents of the ordination diagrams (range of axes, which items are plotted, contents
of the attribute plots etc.). The resulting diagrams can be further adjusted (change of
symbol type, size and colors, change of label font and position, change of line type,
etc.) and combined in the CanoPost for Windows program, providing publication-
ready graphs.

3.3. Decide about ordination model: unimodal or linear?

This section provides a simple-to-use "cookbook" for deciding whether we should
prefer the ordination methods based on the model of linear species response to the
underlying environmental gradient or the weighted-averaging (WA) ordination
methods, corresponding to the model of unimodal species response. Inevitably, the
presented recipe is somewhat simplistic, so it should not be followed blindly.

In the Canoco for Windows project that we use to decide between the
unimodal and linear methods, we try to match as many choices we will make in the
final analysis, as possible. If we have covariables, we use them here as well, if we
use only a subset of the environmental variables, we subset them here too. If we log-
transform (or square-root-transform) our species data, we do it here as well.

For this trial project, we select the weighted averaging method with
detrending. This means either the DCA for the indirect gradient analysis or DCCA
for the constrained analysis. Then we select detrending by segments (which also
implies the Hill's scaling of ordination scores) and then we select the other options as
in the final analysis and run the analysis. We then look into the analysis results stored
in the Log view. At the end of the log, there is the Summary table and in it is a row
starting with "Lengths of gradient", looking similarly to the following example:

Lengths of gradient : 2.990 1.324 .812 .681

Now we locate the largest value (the longest gradient) and if that value is
larger than 4.0, we should use the unimodal method (DCA, CA, or CCA). Use of the
linear method would not be appropriate, as the data are too heterogeneous and too
many species deviate from the assumed model of linear response. On the other hand,
if the longest gradient is shorter than 3.0 , the linear method is probably a better
choice (not necessarily, see Ter Braak et Šmilauer 1998, section 3.4 on page 37).
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3.4. Doing ordination - PCA: centering and standardizing

Figure 3-2 Centering and standardization options in the Project Setup wizard

This Project Setup wizard page is displayed for the linear ordination methods (PCA
and RDA) and refers to the manipulations with the species data matrix before the
ordination is calculated.

The centering by samples (the option in the left half of the wizard page)
results in the average of each row to be equal to zero. Similarly, the centering by
species (in the right half of the wizard page) results in the average of each column to
be equal to zero. Centering by species is obligatory for the constrained linear method
(RDA) or for any partial linear ordination method (i.e. where covariables are used).

Standardization (by samples or by species) results in the norm of each row or
column being equal to one. The norm is the sum of squares of the row / column
values. If we apply both the centering and the standardization, the centering is done
first. Therefore, after centering and standardizing by species, the columns represent
variables with zero average and unit variance. As a consequence, PCA performed on
the species data then correspond to the "PCA on a matrix of correlations" (between
the species).

If we have environmental variables available in the ordination method
(always in the RDA and optionally in the PCA), we can select the standardization by
the error variance. In this case, CANOCO estimates for each species separately the
variance in the species values left unexplained after fitting that species to the selected
environmental variables (and covariables, if any). The inverse of that variance is then
used as the species weight. Therefore, the better is a species described by the
provided environmental variables, the higher weight it has in the analysis.
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3.5. Doing ordination - DCA: detrending

Figure 3-3: Detrending method selection in the Project Setup wizard

The original method of correspondence analysis suffers often by the so-called arch
effect. With such effect in place, the scores of samples (and of the species) on the
second ordination axis are a quadratic function of the scores on the first axis. Hill et
Gauch (1980) proposed a heuristic, but often well working method of removing this
arch effect, called detrending by segments. This method was criticized by several
authors (see for example Knox, 1989), yet there are essentially no better ways of
dealing with this artifact. Use of detrending by segments is not recommended for
unimodal ordination methods where either covariables or environmental variables are
present. In such case, if detrending procedure is needed, the detrending by
polynomials is the recommended choice. The reader is advised to check the Canoco
for Windows manual for more details on deciding between the polynomials of
second, third, or fourth degree.

The whole detrending procedure is usually not needed for the constrained
unimodal ordination. If an arch effect occurs in CCA, this is usually a sign of some
redundant environmental variables being present. There may be two or more
environmental variables strongly correlated (positively or negatively) with the each
other. If we retain only one variable from such a group, the arch effect disappears.
The selection of a subset of environmental variables with a low extent of cross-
corelation can be performed using the forward selection of the environmental
variables in the Canoco for Windows program.
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3.6. Doing ordination - scaling of ordination scores

Figure 3-4 Scaling options for the linear and for the unimodal methods in the Project Setup
wizard

The most important result of an ordination method applied to our data is the
ordination diagram. Theoretically, we are able to reconstruct (with certain level of
error) not only the primary data table (the species data), but also the matrix of
(dis)similarities between our samples and correlation matrix between the species, all
based on the ordination diagram. We usually do not attempt to recover such data
from the ordination diagram (because we have the measured values available), but
we definitively go part of this way when interpreting contents of the ordination
diagram and generating interesting research hypotheses. The precision of conclusions
we make about similarity of samples, relations between species and/or environmental
variables, etc. depends partly on the relative scaling of the scores on individual
ordination axes. One kind of scaling is more favorable if we focus our attention onto
relation between our sampling units, another in the case we interpret the relation
between the species.

The options are somewhat similar both in the linear and the unimodal
ordination methods. First, we should decide whether we will focus, during the
interpretation of the resulting ordination diagrams, on the samples (this includes
comparison of classes of samples, as portrayed by the nominal environmental
variables) or on the species.

Then, for the linear model, we should decide whether the differences in the
abundances of individual species in the data should be mirrored by the lengths of
their arrows (with dominant species having generally longer arrows than those with
small abundace values) or whether each species should be relativized. The
relativization is appropriate for the so-called correlation biplots.

In the case of the unimodal ordination, we should decide about the method of
the interpretation of the ordination diagrams. For the data with very long composition
gradients (with the large beta diversity across the samples), the distance rule is more
appropriate and so is the Hill' scaling. In the other cases, the biplot scaling provides
ordination diagrams that can be interpreted in a more quantitative way.

3.7. Running CanoDraw 3.1

The new version of the CANOCO package (Canoco for Windows 4.0) provided
users with an additional program - CanoPost, that allows to substantially improve
diagrams created with the program CanoDraw, which is available since the
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introduction of the CANOCO 3.x. When using program CanoDraw (version 3.1) in
this new context, we should focus on creating contents of the diagrams and postpone
the improvements of the appearance till we open the diagrams in the CanoPost
program (see the section 3.8).

Program CanoDraw can be started directly from the Canoco for Windows
program, using the CanoDraw button placed in the project view window.
Nevertheless, this button is not always enabled because CANOCO observes the
limitation on the data dimensions, imposed by the CanoDraw program. CanoDraw
3.1 is still a DOS program and so it cannot use the memory available for the
Windows programs. Therefore, we can work only with the analyses with up to 500
samples, 500 species and 30 or less environmental variables. As an additional
restriction, CanoDraw does not permit opening CANOCO analyses where the
forward selection of environmental variables was explicitly performed. ┼

If we invoke CanoDraw 3.1 via Canoco for Windows program, it is called
with several command line parameters that specify:
• name of the CANOCO project file. After the CanoDraw is opened (it works only

in a full-screen, DOS graphic mode), we do not need to navigate it to the
CANOCO project file (the file with .CON extension), because this was already
opened. CanoDraw also already parsed the file with the ordination results (the
"solution" file) - of course unless some error was encountered during that process

• type of the output device as a PostScript printer. This setting is important for
saving graphs compatible with the CanoPost program. It is not passed to
CanoDraw only in the case the file path to the CANOCO project file is too long.
The command line used to start CanoDraw is limited, in its extent to 127
characters, including full path to the CanoDraw program. The only change in
CanoDraw settings that must be done explicitly is to change output from first
parallel port to a file.

As it was already mentioned above, when using CanoDraw we should
concentrate on the contents of the graphs: what is the range of the diagram' axes,
which items are plotted, whether all the items appear with appropriate labels etc. We
do not need to care about color and type of the symbols or lines, about the exact
positions of the labels - all that can be changed later on in the CanoPost for Windows
program.

First and foremost, we must decide what kind of diagram we want to produce.
When summarizing CANOCO project where both species (community composition)
and environmental data were used, the biplot diagram including species and
environmental variables is the most appropriate default choice. Before creating that
diagram, we should make two important decisions about its content:
• the qualitative explanatory ("environmental") variables are best represented by

the centroid scores for the individual dummy variables. The symbols then
represent the centroids of the scores of samples belonging to the particular class
(level) of that qualitative variable. CanoDraw uses these scores for variables

┼ Here, Canoco for Windows provides a workaround: after you run an analysis where "manual"
(interactive) forward selection was employed, Canoco offers you to make the selection results explicit.
This means that forward selection process is removed from the Canoco project settings and the
environmental variables that were not selected during this process are marked as explicitly deleted
from the analysis. We must then re-run the analysis (producing the ordination results identical to those
from the analysis with forward selection) and then we can use the CanoDraw program.
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marked as nominal. We can select them using the menu command File/Nominal
env. variables.

• for a typical community composition data, it often does not make sense to display
scores of all the species. Some are so rare in the data, that no relevant information
is provided on their ecological preferences. Other species might not be
characterized well by the explanatory variables used in the analysis. We usually
try to define the subset of species appearing in an ordination diagram using
a combination of two criteria, both accessible from the dialog box invoked by the
Options/Restrictions/Rules of visibility menu command: Minimum fit states
the minimum percentage of variability in species values explained by the
ordination subspace onto which are the species scores projected (usually the first
two ordination axes); this characteristic is not available for the unimodal-model
based analyses where detrending by segments was applied; minimum weight is
available only for the unimodal ordination model and specifies the minimum
weight (relatively to the species with the highest weight in the data) a species
must have, to be plotted.

3.8. Adjusting diagrams with CanoPost program

We start our work with a diagram (typically an ordination diagram) in the CanoPost
for Windows program by importing the file produced by the CanoDraw 3.1 program.
This file typically has the .psc extension in its name. Then, we can change the
appearance of the diagram and save the modified diagrams in the CanoPost own file
format (using the .cps extension). This file can be reopened later in the CanoPost
program.

When adjusting the diagrams, it is better to start with their global features
before adjusting the details. First, we should decide about the size of the resulting
printout of the diagram. This paper printout metaphor is used even if the final result
should be an image file included into an electronic document. CanoPost bases its
expectation of the paper size on the default printer settings in the Windows
environment, but we can change this using the File/Page setup... menu command.
The size of this output media is displayed in CanoPost as a white rectangle upon
which the diagram is drawn. Most often, we should try to fill up this output page
with our graph as much as possible. To achieve this, we use combination of two
commands (Edit/Scale graph and Edit/Shift graph), also accessible using the
toolbar shortcuts.

After that, we might modify size of symbols and typeface and size of labels.
Only after these settings are fixed makes sense to adjust positions of the labels. We
try to minimize their overlap so as to improve the readability of the graph contents.

3.9. New analyses providing new views of our datasets

The work with the multivariate data has usually an iterative character. We might find
useful to modify the explanatory variables, based on our exploration of the results we
get from the initial analyses. This includes a selection of subset of environmental
(explanatory) variables based on the knowledge we gain during the forward selection
of environmental variables in CANOCO.

A special case of this subset selection is the recoding of the qualitative
variables. Because the individual levels of a qualitative explanatory variable are
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judged independently (as individual dummy variables), we can see which levels
differ significantly from the others in terms of the community composition (the
species data).

Based on the exploration of the relation of the explanatory variables to the
ordination axes and to individual species, we can transform the environmental
variables to maximize their linear relation with the gradients being recovered by the
ordination model.

In some cases, the ordination results reveal two or more distinct groups of
samples, based on their different composition. In that case, it is often useful to ramify
the results by further separate analyses for each of those groups. In a direct gradient
analysis, this often leads to a change of the picture: the environmental variables
identifiable with the differences between these groups are frequently different from
those acting within such groups.

Another type of a follow-up analysis is used when we identify some
environmental variables important for explaining part of the structure in the species
data. In such case, we can turn those variables into covariables and either test the
additional effects of other, potentially interesting explanatory variables (partial direct
gradient analysis) or just inspect the "residual" variation and try to informally
interpret any pattern found in that way (partial indirect gradient analysis).

3.10. Linear discriminant analysis

(Fisher) linear discriminant analysis (LDA), also called the Canonical Variate
Analysis (CVA), is a method allowing us to find the scores for samples, expressed as
the linear combinations of the explanatory variables that (in a particular sense)
optimally separate the a priori defined groups. The method can be performed using
the Canoco for Windows software with some additional features, not available in the
standard implementations of this method.

To perform LDA in CANOCO, the classification of samples must be used as
the species data. Each variable represents a single class and the samples belonging to
this class have value 1.0 for this variable and zero values for the other variables
("species"). This is the appropriate coding for the classical discriminant analysis,
where the classification is "crisp". CANOCO allows us to perform a discriminant
analysis based on a "fuzzy" classification, where (some) samples can belong to
several classes. This situation might represent a true partial membership in several
classes or our uncertainty about the true membership for those samples. The only
requirement for fuzzy coding is that the sum of sample' values in species data is
equal to one.

The variables we want to use for the discrimination enter the CANOCO
analysis as the environmental variables. We then select a canonical correspondence
analysis (CCA) using Hill's scaling with a focus on the species distances (value -2 in
the console version of CANOCO).

The one distinct advantage of doing LDA in CANOCO is that we might
perform a partial discriminant analysis. In such an analysis, we can look for
explanatory variables allowing us to discriminate between given classes in addition
to other known discriminatory variables.
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Another two distinct features of LDA in the CANOCO program is the ability
to select a subset of the discriminating (explanatory) variables by means of the
forward selection of environmental variables and the ability to test the discriminatory
power of the variables by the non-parametric Monte-Carlo permutation test.

When plotting the results, the species scores represent the means (centroids)
of the individual classes in the discriminatory space. Scores of samples (the SamE
scores) are then the discriminant scores for the individual observations. A biplot
containing biplot scores of environmental variables (BipE) presents the table of
averages of individual explanatory variables within individual classes, while the
regression / canonical coefficients (Regr scores) of environmental variables
represent the loadings of the individual variables on the discriminant scores.



46

4. Direct gradient analysis and Monte-Carlo permutation
tests

4.1. Linear multiple regression model

Figure 4-1 Graphical representation of a simple linear regression model

We start this chapter with a simple resume of the classical linear regression model,
because its knowledge is very important if we want to grasp the meaning of the direct
gradient analysis.

The Figure 4-1 presents a simple linear regression model used to model
dependence of the values of a variable Y on the values of variable X. The figure
shows difference between the true (observed) values of the response variable Y and
the fitted ones (Y "hat"). The difference between those two is called a regression
residual and is named e in the Figure 4-1.

An important feature of all the statistical models (including the regression
models) is that these models have two main components:
• the systematic component describes the variability in the values of the response

variable(s) that can be explained by one or several explanatory variables
(predictors), using a parameterized function. The simplest is the linear
combination of the explanatory variables, the function used by the (general)
linear regression models.

• the stochastic component is a term referring to the remaining variability in the
values of the response variable, not cast by the systematic part of the model. The
stochastic component is usually defined using its probabilistic, distributional
properties.

We judge the quality of the fitted model by the amount of the variability of
response variable described by the systematic component (usually comparing this
amount to the amount of the unexplained variability - represented by the stochastic
component). We try to present only the regression models where all the predictors
significantly contribute to their quality. We can select such a subset of the predictors
using the stepwise selection. Its most frequent type is the so-called forward selection.
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Here we start with a null model with no predictors, assuming that the variability in
the response variable cannot be predicted and that it represents only a stochastic
variability. We then pick a single predictor from the set of the available variables - it
is the one leading to a regression model with the highest amount of the variability
explained. Even when adding the best predictor, its contribution might be just due to
a chance: if we would randomly swap that predictor's values, such a non-sense
variable would explain a positive amount of the variability in the values of the
response variable, so we must test the contribution of the considered candidate
predictor. If the contribution of the selected predictor is judged to be significant, we
can repeat the process and try to look-up another good predictor in the pool of the
remaining variables. We can again test its contribution and stop this selection as soon
as the "best" among the remaining predictors is not "good enough".

4.2. Constrained ordination model

In the chapter 2, the linear and unimodal methods of indirect gradient analysis
(PCA and CA, respectively) were defined as methods looking for one or more
(mutually independent) gradients representing "optimal" predictors for fitting the
regression models of linear or unimodal species response. The optimality is restricted
by the assumptions of those methods and judged over all the species in the primary
data.

The methods of direct gradient analysis (also called the constrained or
canonical ordination methods) have an identical task, but the gradients these methods
"are allowed to find" are further restricted. These gradients must be linear
combinations of the submitted explanatory (environmental) variables. Therefore, we
try to explain abundances of (all) the individual species using synthetic variables, but
those variables are defined based on the values of the observed characteristics.

In that way, the methods of direct gradient analysis resemble the model of the
multivariate multiple regression. But in such a regression with m response variables
(species in CANOCO) and p predictors (environmental variables in CANOCO), we
must estimate m*p parameters (regression coefficients) from the data. This is not the
case in constrained ordination, where the effect of predictors upon response variables
is "focused" through a low number of intermediate gradients - the ordination axes,
called here the canonical (or constrained) axes. There are as many canonical axes as
there are independent explanatory variables.

In CANOCO, we quite often use the partial analyses where we specify,
beside the environmental (explanatory) variables, the so-called covariables which
represent effects we want to account for and, in that way, remove from the solution
of the ordination model. Covariables (or covariates) are used in a similar context in
the analysis of variance. Here we often use quantitative covariables in addition to the
factors. In a regression analysis sensu stricto, the notion of covariates is not
frequently used, but the difference among them and the "true" explanatory variables
is only in the way we look at them. Both are explanatory variables in a regression
model (and in the ordination model) and only the role we attribute to them differs.

4.3. RDA: constrained PCA

We will illustrate the topics from the previous section on the case of the redundancy
analysis (RDA), a constrained form of the linear ordination method - principal
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components analysis (PCA). We will use a very simple setup, where we try to
determine only the first ordination axis (the first principal component) and we have
two environmental variables (z1 and z2) available, constraining the ordination axis of
RDA.

Both PCA and RDA methods try to find values of a new variable (we will
name it x), which represents an "optimum" predictor for the values of all the species.
The value of that variable for the i-th sample is xi and we use it to predict values of
the k-th species in the i-th sample using the following equation:

yik = b0k + b1kxi + eik

Here both PCA and RDA must estimate two sets of parameters: the values xi which
are the sample scores on the first ordination axis and the regression coefficients for
each species (b1k) which are the species scores on the first ordination axis. The
additional parameter for each species (b0k) represents the "intercept" of the fitted
regression line and we can get rid of its estimation by centering the primary data by
the species (see section 3.4).

Here the similarity between PCA and RDA ends, because in the constrained
method, the values of the sample scores are further constrained. They are defined as
the linear combination of the explanatory variables. In our example, we have two
such variables:

xi = c1zi1 + c2zi2

Note that the parameters estimated here (cj for j-th environmental variables) do not
represent the scores of the environmental variables that are usually plotted in the
ordination diagrams. Rather, they represent the Regr scores in the output from
a CANOCO analysis. The normally plotted scores (BipE - biplot scores of
environmental variables) are the regression coefficients from a regression model
where the sample scores (xi) are fitted separately for the individual explanatory
variables. Therefore, they represent the marginal (independent) effects of individual
environmental variables.

We may combine the two above equations into a single one, further
illuminating the relation of the constrained ordination to the multiple multivariate
regression:

yik = b0k + b1kc1zi1 + b1kc2zi2 + eik

The expressions bk*cj represents the actual coefficient of a multiple multivariate
regression model, but these coefficients are constrained by their definition: they are
based on the two smaller sets of the species scores and of the environmental
variables scores.
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4.4. Monte Carlo permutation test: an introduction

Figure 4-2 Introductory page of the Project Setup wizard for selecting the permutation type

CANOCO has the ability to statistically test the significance of the constrained
ordination models described in the preceding section, using the Monte-Carlo
permutation tests. These statistical tests relate to the general null hypothesis, stating
the independence of the primary (species) data on the values of the explanatory
variables. But CANOCO provides a rich toolbox of specific setups for the tests
applied to the datasets with a particular spatial, temporal or logical internal structure,
related to the experimental or sampling design. The Figure 4-2 illustrates the first
page of a sequence of pages available in the Project Setup Wizard to specify the
permutation test properties.

4.5. Null hypothesis model

The null model of the independence between the corresponding rows of the species
data matrix and the environmental data matrix (referring to the same sample) is the
basis for the permutation test in the CANOCO program. While the actual algorithm
used in CANOCO does not use the approach described here, we might use it to
illustrate better the meaning of the permutation test.
• We start by randomly re-shuffling (permuting) the samples (rows) in the

environmental data table, while keeping the species data intact. Any combination
of the species and environmental data obtained in that way is as much probable
as the "true" data sets, if the null hypothesis is true.

• For each of the data sets permuted in this manner, we calculate the constrained
ordination model and express its quality in a way similar to that used when
judging the regression model quality. In a regression model, we use a F statistics
which is a ratio of the variability of the response variable explained by the
regression model (divided by the number of the model parameters) and of the
residual variability (divided by the number of residual degrees of freedom). In the
case of constrained ordination methods, we use similar statistics, described in
more detail in the following section.

• We record the value of such a statistics for each permutation. The distribution of
these values defines the distribution of this statistics under the null model. If the
test statistics value obtained from the actual data (with no permutation of the
rows of the environmental data table) is highly improbable to come from that
distribution (supposedly being much larger, corresponding to a higher-quality
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ordination model), we reject the null hypothesis. The probability that the "data-
derived" value of the test statistics originates from the calculated null model
distribution then represents the probability of Type I error, i.e. a probability of
rejecting a correct null hypothesis.

The actual algorithm does not permute the actual environmental data table, it rather
permutes the residuals from the fitted dependence of the species data on the
environmental variables and based on each such permutation, constructs a "new data
table". That algorithm is even more complicated in the case the covariables enter the
picture.

4.6. Test statistics

The previous section described the general principle of the permutation test and here
we discus the possible choices for the test statistics used in that test. We mentioned
that such a statistics corresponds to the F statistics used in the parametric significance
test of the regression model. But the choice of the definition for this statistics in
constrained ordination is difficult, because of the multidimensionality of the obtained
solution. In general, the variability in the response variables (of the species data)
described by the explanatory (environmental) variables is cast in more than one
canonical axis. The relative importance of the canonical axes decreases from the first
up to the last canonical axis, but we can rarely ignore all the canonical axes beyond
the first one. Therefore, we can either express the accounted variance using the sum
of all canonical axes or focus on one canonical axis, typically the first one. This
corresponds to two test statistics available in CANOCO version 3.x and 4.x and the
two corresponding permutation tests:
• Test on the first canonical axis uses statistics defined in the following way:
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The variance explained by the first (canonical) axis is represented by its eigenvalue
(λ1). The residual sum of squares (RSS) term corresponds to the difference between
the total variance in the species data and the amount of variability explained by the
first canonical axis (plus by the covariables, if any are present in the analysis). The
number of covariables is q.
• Test on the sum of the canonical axes. Here we refer to the overall effect of p

explanatory variables, revealed on (up to) p canonical axes:
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The RSS term in this formula represents the difference between the total variability
in the species data and the sum of eigenvalues of all the canonical ordination axes.

As the previous section explained, the value of the one of the two test
statistics originating from the original data is compared with the distribution of that
statistics under the null model assumption. This is illustrated by the Figure 4-3.



51

Figure 4-3: The distribution of the F-statistics values from a Monte Carlo permutation test,
compared with the F-statistics value of the "true" datasets

In this figure, we see a histogram approximating the shape of the distribution of the
test statistics. The position of the vertical arrow marks the value calculated from the
"real" data. The permutations where the corresponding F-like statistics value is above
this level represent the evidence in favour of a non-rejection of the null hypothesis.
The Type I error of this test is then calculated as:
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where nx is the number of the permutations yielding F statistics as large or larger
than that from the "real" data and N is the total number of permutations. The value of
1 is added to both numerator and denominator because (under the assumption of the
null model) the statistics based on the actually observed data is also considered to
come from the null model distribution and, therefore, "vote against" the null
hypothesis rejection. The usual choices of the number of permutations (like 99, 199,
499) follow from that specific property of the formula given above.

4.7. Spatial and temporal constraints

The way the permutation test was described in the preceding section is correct only
in the case the collected set of samples does not have any implied internal structure,
namely if the samples are picked up randomly, independently of each other. In this
case, we can fully randomly reshuffle the samples, because under the null model,
each sample' environmental data (explanatory variables values) can be matched with
any other sample' species data with an equal probability.

This is no longer true when the "relatedness" between different samples is not
equal across the whole dataset. The basic three families of the internal dataset
structure recognized by the Canoco for Windows are represented by the choices in
the Setup Wizard page illustrated in the Figure 4-4.
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Figure 4-4 Project Setup wizard page for selecting restrictions for a permutation test

The samples may be arranged along a linear transect through the space or along
a time axis. Then the samples cannot be permuted randomly, because we must
assume an autocorrelation between the individual observations in both the species
and the environmental data. We should not disturb this correlation pattern during the
test because our hypothesis concerns the relations between the species and
environmental data, not within these datasets. To respect the autocorrelation
structure, CANOCO (formally) bends the sequence of samples in both the species
and the environmental data into a circular form and re-assignment is performed by
"rotating" the environmental data band in respect to the species data band. The
Canoco for Windows manual should be discussed for more details of this and other
described permutation restrictions.

A similar spatial autocorrelation occurs when we generalize location of
sample on a linear transect into general positioning of samples in space. However,
CANOCO does not allow this and provides support only for the placement of
samples on a rectangular, homogeneously spaced grid.

The most general model of the internal structure of the datasets is provided by
the last item in the Figure 4-4, named the split-plot design. This type of permutation
restrictions is described in more detail in the following section.

All these restrictions can be further nested within another level of blocks.
Blocks are usually defined in the CANOCO program using (a subset of) nominal
covariables and represent groups of samples that are similar to each other more than
to the samples from the other blocks. In the permutation test, the samples are
permuted (with eventual further restrictions) only within those blocks, never across
the blocks. If we compare a constrained ordination model with a model of the
analysis of variance, the blocks can be seen as a random factor with an effect not
interesting for the interpretation.
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4.8. Design-based constraints

Figure 4-5 Project Setup wizard page for specifying permutation restrictions for a split-plot
design

The split-plot design restriction available in Canoco for Windows 4.0 allows us to
describe a structure with two levels of variability (with two "error levels").┼

The upper level is represented by the so-called whole-plots. Each of the
whole-plots contains the same number of split-plots, representing the lower level of
the design. CANOCO provides a great extent of flexibility in permuting samples at
the whole-plot and/or the split-plot levels, from no-permutation, through spatialy or
temporaly restricted permutations up to a free exchangeability at both levels. In
addition, CANOCO provides notion of dependence of the split-plots structure across
the individual whole-plots. In this case, the particular permutations of the split-plots
within the whole-plots are identical across the whole-plots on each independent
permutation test.

4.9. Stepwise selection of the model

At the end of the section 4.1, the forward selection of the explanatory variables for
a regression model was described in some detail. The forward selection available in
the CANOCO program has the same purpose and methodology, using the partial
Monte Carlo permutation test to assess the quality of each potential candidate
predictor for extending the subset of the explanatory variables used in the
constrained ordination model.

If we select an interactive ("manual") forward selection procedure in the
Canoco for Windows program, CANOCO presents the following window during the
analysis (Figure 4-6).

┼ Another level can be added, in some cases, using the permutation within blocks defined by the
covariables (see the previous section).
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Figure 4-6 Dialog box for the Forward selection of environmental variables. The question-marks
for the variable BrLeaf correspond to the variable which was not tested by the permutation test

during the forward selection.

The Figure 4-6 illustrates the state of the forward selection procedure where three
best explanatory variables (Forest, BrLeaf, E2) were already selected (they are
displayed in the lower part of the window). The values in the window top show that
the three selected variables account for approximately 72% of the total variability
explained by all the environmental variables (i.e. 0.320 of 0.447).

The list of variables in the upper part of the window shows the remaining
"candidate predictors" ordered by the decreasing contribution that the variable would
provide when added to the set of already selected variables. We can see that the
variable "ForDens" is a hot candidate. It would increase the amount of explained
variability from 0.320 to 0.352 (0.320 + 0.032).

To judge whether such an increase is larger than a random contribution, we
can use a partial Monte Carlo permutation test. In this test, we would use the
candidate variable as the only explanatory variable (so we would get an ordination
model with just one canonical axis) and the already selected environmental variables
(Forest, BrLeaf, and E2 in this case) as the covariables, together with any a priori
selected covariables. If we reject the null hypothesis for that partial test, we can
include that variable into the subset.

The effect of the variable tested in such context is called its conditional,
partial effect and its value is strictly dependent on the exact selection sequence. But
on the start of the forward selection process, when no environmental variable entered
the selected subset yet, we can test each variable separately, to estimate its
independent, marginal effect. This is the amount of variability in the species data
that would be explained by a constrained ordination model using that variable alone
as an explanatory variable. The discrepancy between the order of variables sorted
based on their marginal effects and the order corresponding to a "blind" forward
selection (when alway picking the best candidate) is caused by the correlations
between the explanatory variables. If these variables would be completely linearly
independent, both these orders would be identical.

If the primary purpose of the forward selection is to find a sufficient subset of
the explanatory variables that represents the relation between the collected species
and environmental data, then we have a problem with the "global" significance level
related to the whole selected subset, if treated as a single entity. If we proceed by
selecting the environmental variables as long as the best candidate has Type I error
estimate (P) lower than some preselected significance level α, then the "collective"
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Type I error probability is in fact higher than this level. We do not know how large is
the Type I error probability, but we know that the upper limit is Nc* α, where Nc is
the maximum number of tests (comparisons) made during the selection process. The
appropriate adjustment of the significance threshold levels on each partial test
(selecting only variables with achieved Type I error probability estimate less than α/
Nc) is called Bonferoni correction. Here the value of Nc reprents the maximum
possible number of steps during the forward selection (i.e. the number of
independent environmental variables). Use of the Bonferoni correction is
a controversial issue.

Another difficulty we might encounter during the process of the forward
selection of environmental variables occurs if we have one or more factors coded as
dummy variables and used as the environmental variable. The forward selection
procedure treats each dummy variable as an independent predictor so we cannot
evaluate contribution of the whole factor at once. This is primarily because the whole
factor contributes more than one degree of freedom to the constrained ordination
model (similarly, a factor with K levels contributes K - 1 degrees of freedom in
a regression model). In the constrained ordination, there are K - 1 canonical axes
needed to represent the contribution of such a factor. On the other hand, the
independent treatment of the factor levels provides an opportunity to evaluate the
extent of differences between the individual classes of samples defined by such
a factor. This is partly analogical to the multiple comparisons procedure in the
analysis of variance.

4.10. Variance partitioning procedure

In the previous section, we explained the difference between the conditional and
marginal effects of individual explanatory (environmental) variables upon the species
data (response variables). We also stated that the discrepancy in the importance of
the explanatory variables as judged by their marginal effects and their conditional
effects is caused by the correlations between those explanatory variables. Any two
explanatory variables that are correlated share part of their effect exercised (in the
statistical, not necessarily the causal sense) upon the species data. The shared amount
of the explanatory power for a pair of explanatory variables is equal to a difference
between the variable A' marginal effect and its conditional effect evaluated in
addition to the effect of the variable B.

This is the basis of the so-called variance partitioning procedure (Borcard,
Legendre & Drapeau, 1992) where we, most often, do not quantify the effects of just
two explanatory variables: rather, we attempt to quantify the effects (and their
overlapp) of two or more groups of environmental variables representing some
distinct, ecologically interpretable phenomena. A separation of the variability in
space and in time might serve as a typical example.

We will describe the variance partitioning procedure using the simplest
example with two groups of explanatory variables (X1 and X2). Each group contains
one or more individual environmental variables. The diagram in Figure 4-7 presents
the break-down of the total variability in the species data in respect to those two
groups of variables.
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Figure 4-7 Partitioning of the variance in the species data into the contributions of two subsets
of the environmental variables (A, B, and shared portion C) and the residual variance (D).

The area marked as D corresponds to the residual variability, i.e. the
variability not explained by the ordination model including environmental variables
from both the X1 and the X2 groups. The fraction A represents the partial effect of the
variables from group X1, similarly the fraction B represents the partial effect of the
group X2. The effect shared by both groups is the fraction C. It is clear that the
amount of the variability explained by the group X1, when ignoring variables from
the group X2 is equal to A+C. We proceed with the estimation by using the partial
analyses.

We estimate A from the analysis where variables from X1 were used as the
environmental variables, while variables from X2 as the covariables. Similarly, we
estimate B as the sum of the eigenvalues of canonical axes from analysis where X2

acted as the environmental variables and X1 as the covariables. We then calculate the
size of C by subtracting sum of A and B from the amount of variability explained by
an ordination model with the variables from both X1 and X2 acting as the explanatory
variables.
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5. Classification methods

The aim of classification is to obtain groups of objects (samples, species) internally
homogeneous and distinct from the other groups. When the species are classified
then the homogeneity means their similar ecological behavior manifested by their
distributional similarity. The classification methods are usually categorized as in the
Figure 5-1.

nonhierarchical hierarchical
(e.g., K-means clustering)

divisive agglomerative
(„classical“

cluster analysis)
monothetic polythetic

(e.g. association (e.g. TWINSPAN]
analysis)

Figure 5-1 Type of classification methods

Historically, the numerical classifications were considered an objective
alternative to the subjective classifications (like Zuerich-Montpellier
phytosociological system). It should be noted that the results of numerical
classifications are objective in the sense that the same method gives (usually) the
same results. However, it should be kept in mind that the results of numerical
classifications are dependent on the methodological choices.

5.1. Sample data set

The various possibilities of classification will be demonstrated using data set of 14
relevés from an altitudinal transect in Nizke Tatry Mts, Slovakia. The relevé 1 was
recorded in altitude 1200 m a.s.l., relevé 14 in 1830 m a.s.l. Relevés were recorded
using the Braun-Blanquet scale (r, +, 1 to 5). For calculations, the scale was
converted into numbers 1 to 7 (ordinal transformation of Van der Maarel, 1979).
Data were entered as a classical phytosociological table (file tatry.xls) and data
on the species composition was imported using the WCanoImp into the condensed
Cornell (CANOCO) format, to enable use of CANOCO and TWINSPAN, and the
data were also imported into a Statistica file.

First, let us have a look on the similarity structure displayed by the DCA
analysis. The following species-samples biplot was obtained (Figure 5-2).
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Figure 5-2: Species-samples biplot of results of DCA of the altitudinal transect in the Tatry Mts.
Species with highest weight (the most frequent ones) were selected for the display.

The figure demonstrates that there is a linear variation in the data, corresponding to
the altitudinal gradient. The samples 1 to 5 are the spruce–forest samples
(characterized by e.g. Picea abies, Dryopteris dilatata, Avenella [=Deschampsia]
flexuosa), and samples (11-) 12 to 14 are typical alpine grasslands, and there is
a dwarf-pine zone in between (Figure 5-2). We will now have a look how particular
classification methods will divide this gradient into vegetation types, and will also
demonstrate technically, how to use particular procedures.
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Figure 5-3: Response curves of the important species on the elevation gradient, fitted in
CanoDraw by a second order linear predictor (GLM procedure).- see chapter 11.

5.2. Non-hierarchical classification (K-means clustering)

The goal of the method is to form (predetermined number of) groups of objects
(clusters); the groups should be internally homogenous and different from each other.
All the groups are of the same level, there is no hierarchy. Here, we will use the K-
means clustering as a representative of the non-hierarchical classifications.

For the computation, the iterative relocation procedure is applied. The
procedure starts with k (desired number of clusters) clusters, and then moves the
objects to minimize within-cluster variability and maximize the between-cluster
variability. When the clusters are different, then the ANOVA for particular species
shows significant results, so the procedure can be seen as “ANOVA in reverse”, or
forming groups to get the most significant ANOVA results for most species
(variables).

The relocation procedure stops when no move of a object (sample) improves
the criterion. You should be aware, that in this way you get local extreme, but can be
never sure about the global extreme. It is advisable to start with different initial
clusters and check if the results are the same for all of them.

We will use Statistica program (procedure K-means clustering). In Statistica,
call the Cluster Analysis procedure and select K-means clustering. On the panel,
select:

Variables: All - alternatively, you can select a subset and calculate the
classification using tje selected species only, e.g. only the herbs
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Figure 5-4 Dialog box for specifying a K-means clustering in the Statistica for Windows
program

In the next panel, we should first ask for Members of each cluster &
distances. Here we learn that in the first cluster, there are samples 1 to 6, in the
second samples 7 to 11, and in the third 12 to 14. That the samples in each cluster
form a row is caused by the linear character of variation in our data; otherwise, we
can get one group containing samples 1, 3, and 5, and the other 2 and 4. For each
cluster, we see the distances to the center of corresponding cluster, e.g. for cluster 1:

Members of Cluster Number 1 (tatry.sta)
and Distances from Respective Cluster Center
Cluster contains 6 cases

Case No. Case No. Case No. Case No. Case No. Case No.
C_1 C_2 C_3 C_4 C_5 C_6

Distance 0.49637 0.577225 0.456277 0.600805 0.520278 1.017142

The samples seem to be homogeneous, with the exception of the sample 6,
being an outlier (similarly, sample 10 is outlier in cluster 2). The result is in a good
agreement (including the determination of outliers) with the DCA analysis.

Now, we can ask for Cluster means and Euclidean distances. Table of the
Euclidean distances provides an information on the similarity among the individual
clusters and the table of cluster means provides an information on the mean values of
the species in the particular clusters.

We can see that the most similar are the clusters 1 and 2, the most dissimilar 1
and 3 (as expected).

Euclidean Distances between Clusters
(tatry.sta)
Distances below diagonal
Squared distances above diagonal

No. 1 No. 2 No. 3
No. 1 0 1.616661 3.178675
No. 2 1.27148 0 2.212292
No. 3 1.782884 1.487377 0

Further, the representation of species in particular clusters is clear from the
means:
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Cluster Means (tatry.sta)
Cluster Cluster Cluster
No. 1 No. 2 No. 3

PICEABIE 5.416667 1.6 0
SORBAUCU 1.75 1.4 0
PINUMUGO 0.333333 6.4 1.333333
SALISILE 0 0.8 0
etc……

Clearly, Picea abies is common in the cluster 1 (spruce forests) and missing
in the cluster 3 (alpine meadows), dwarf pine, Pinus mugo, is rare outside the middle
“krumbholz” zone, etc. Useful information is provided by the Analysis of variance:

Between Within signif.
SS df SS df F p

PICEABIE 71.68095 2 21.40831 11 18.41552 0.000309
SORBAUCU 6.3 2 23.575 11 1.469778 0.271826
PINUMUGO 107.6571 2 15.2 11 38.9549 1.02E-05
SALISILE 2.057143 2 12.8 11 0.883929 0.440566
JUNICOMM 6.547619 2 4.666667 11 7.716836 0.00805
VACCMYRT 0.32381 2 20.03333 11 0.0889 0.915588
OXALACET 16.16667 2 19.33333 11 4.599139 0.035353
HOMOALPI 1.414286 2 4.3 11 1.808971 0.209308
SOLDHUNG 18.66666 2 7.333336 11 13.99999 0.000948
AVENFLEX 16.89524 2 4.033331 11 23.03897 0.000117
CALAVILL 0.928572 2 40.875 11 0.124945 0.88378
GENTASCL 7.295238 2 5.633332 11 7.122571 0.010368
DRYODILA 8.914286 2 4.8 11 10.21428 0.003107
etc.

For each species, an ANOVA comparing means in the three clusters is
calculated. Note that you should not interpret the p-values as ordinary Type I error
probabilities, because the clusters were selected to maximize the differences between
clusters, nevertheless, the p-values provide useful lead which species differ
considerably between clusters (or, on which species the classification into clusters is
based). Picea abies, Pinus mugo, or Soldanella hungarica differ considerably among
particular clusters, whereas Vaccinium myrtillus does not (it was relatively common
along the whole transect).

5.3. Hierarchical classifications

In hierarchical classifications, the groups are formed that contain subgroups, so there
is a hierarchy of levels. When the groups are formed from the bottom (i.e. the
method starts with joining the two most similar objects), then the classifications are
called agglomerative. When the classification starts with the whole data set, which
is first divided into two groups and those are further divided, the classification is
called divisive. The term “Cluster analysis” is often used for the agglomerative
methods only.

Agglomerative hierarchical classifications (Cluster analysis)

The aim is to form a hierarchical classification (i.e. groups, containing subgroups)
which is usually displayed by a dendrogram. The groups are formed “from the
bottom”, i.e. the most similar objects are first joined to form the first cluster, which is
then considered an object, and the joining continues until all the objects are joined in
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the final cluster, containing all the objects. The procedure has two basic steps: in the
first step, the similarity matrix is calculated for all the pairs of the objects (the matrix
is symmetric, and on the diagonal there are either zeroes – for dissimilarity – or the
maximum possible similarity values). In the second step, the objects are clustered
(joined, amalgamated) so that after each amalgamation, the newly formed group is
considered to be an object, and the similarities of the remaining objects to the newly
formed one are recalculated. The individual procedures (algorithms) differ in the way
they recalculate the similarities.

You should be aware that there are several methodological decisions affecting
the final result of classification:

Field sampling
importance value

Raw data
transformation, standard-

ization, similarity measure
(Dis)similarity matrix

clustering algorithm

Tree

Figure 5-5 Our decisions affecting the results of an agglomerative hierarchical classification

Agglomerative hierarchical classifications are readily available in most
statistical packages. We will demonstrate their use in the Statistica package, however
the rules are similar in most packages. Statistica, similarly to most programs, allows
for a direct input of the similarity matrix. This is useful because Statistica contains
only a very limited number of dis/similarity measures. Those often used in ecology
(like the percentage similarity) are not included. It is possible to prepare a simple
macro, e.g. in the Excel spreadsheet which will calculate the similarities and then
import the similarity matrix into Statistica.┼

In its basic form, the procedure used in the Statistica program is quite simple:

Select Joining (tree clustering) in the startup panel: for plot clustering, use option as
in the Figure 5-6.

┼ You need to prepare the file according to rules for similarity matrices in Statistica: a symmetric
square matrix, with names of columns being the same as names of rows, and surplus four rows,
containing averages and standard deviations of variables (necessary only for the correlation and
covariance type), and in first column of the third row number of items compared and in the fourth row
the type of the matrix: 1 = correlation, 2 = similarities, 3 = dissimilarities, and 4 = covariance.



63

Figure 5-6 Dialog box for hierarchical, agglomerative clustering in Statistica for Windows

All the variables are selected (you can do the analysis with a subset of
variables only). Raw data means that in your data file are the raw data, not the
similarity matrix. We selected the Complete Linkage amalgamation (clustering)
procedure. Here are other feasible possibilities and the decision affects the resulting
dendrogram. There are so called “short hand” methods (e.g. Single Linkage) where
the distance between the clusters is defined as the distance between the closest points
in the two clusters. Those methods produce dendrograms characterized by a high
“chaining”. The “long hand” methods, e.g. complete linkage, where the distance of
two clusters is defined as the distance of the furthest points, tend to produce compact
clusters of roughly equal size (Figure 5-7).

A B

Figure 5-7: Distance of two clusters, A and B, as defined in the single linkage (full line) and in
the complete linkage (broken line).

There are many methods, usually somewhere between the two cases cited: the
average linkage method used to be very popular. However, this term was used
inconsistently. The term unweighted-pair groups method (UPGMA) describe the
most common variant. In ecology, the “short hand” methods are usually of little use.
Compare the two resulting dendrograms (Figure 5-8). The results of the complete
linkage are better ecologically interpretable, there are groups formed (and, based on
our external knowledge of the nature of the data, they can be judged as better
reflecting the elevation gradient).

We selected the Euclidean distance as a measure of the sample similarity.
There are not many possibilities in the Statistica (PCORD, for example, provides
a much wider selection). However, the matrix with any kind of indices can be
entered manually (i.e. pre-calculated in any spreadsheet). Also, one of the important
decisions affecting greatly the similarity values are the standardizations and data
transformations: according to our experience (Kovář & Lepš 1986), the
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transformations are more influential to the resulting classification than the selection
of the clustering rule.

Also note that unlike the TWINSPAN (see below) the orientation of
subgroups in the dendrogram is arbitrary and, therefore, should not be interpreted.

Figure 5-8: Comparison of single linkage and complete linkage clustering of the samples. Note
the higher degree of chaining (samples 14 and 10 do not belong to any cluster, but are chained to
the large cluster containing all the other samples. The complete linkage results are better
interpretable.

Similarly, we can calculate the cluster analysis of variables (i.e. of the
species). In this case, the correlation coefficient will be probably a reasonable
measure of species distributional similarity (note, that the appropriate similarity
measures differ according to whether we cluster samples or species).

The results of the clustering of the species are as follows:
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Figure 5-9: The classification of species. Note that the procedure distinguished reasonably the
group of the alpine grassland species (Primula minima, Salix herbacea, Carex sempervirens,
Campanula alpina) on the left side of the diagram. Similarly, on the right side of the diagram
there are the species of the spruce forests.

Divisive classifications

In divisive classifications, the whole set of objects is divided “from the top”: first,
the whole data set is divided into two parts, each part is then considered separately,
and is divided further. When the division is based on a single attribute (i.e. on
a single species), then the classification is called monothetic, when based on
multiple species, then the classification is polythetic. The significance of monothetic
methods is mostly a historical one. The classical “association analysis” was
a monothetic method. The advantage of the divisive methods is that each division is
accompanied by a rule used for the division, e.g. by a set of species typical for either
part of the dichotomy.

The most popular divisive method (and program of the same name)
TWINSPAN (Two Way INdicator SPecies ANalysis) was partially inspired be the
classificatory methods of the classical phytosociology (use of indicators for
definition of vegetation types). The idea of an indicator species is basically
a qualitative one. Consequently, the methods works with qualitative data only. In
order not to loose the information and the quantity of species, the concept of pseudo-
species and pseudo-species cut levels was introduced. Each species can be present as
several pseudospecies, according to its quantity in the sample. The pseudo-species is
present, if the species quantity exceeds the corresponding cut level. Imagine, that we
selected pseudo-species cut levels: 0, 1, 5, 20. Then the original table is translated to
the table used by the TWINSPAN as follows:

Tree Diagram for 48 Variables
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Species Sample 1 Sample 2
Cirsium oleraceum 0 1
Glechoma hederacea 6 0

Original
table

Juncus tenuis 15 25
Cirsoler1 0 1
Glechede1 1 0
Glechede2 1 0
Junctenu1 1 1
Junctenu2 1 1
Junctenu3 1 1

Table with pseudo-
species used in
TWINSPAN

Junctenu4 0 1

In this way, the quantitative data are translated into qualitative (presence-
absence) data.

In TWINSPAN, the dichotomy (division) is constructed on the basis of
a correspondence analysis ordination. The ordination is calculated and the samples
are divided into the left (negative) side and the right (positive) side of the dichotomy
according to their score on the first CA axis. The axis is divided at the center of
gravity (centroid). However, usually there are many samples at the center of gravity,
Consequently, many samples are close to the border, and their classification would
depend on many random factors. Therefore the new ordinations are constructed,
which give a higher weight to the “preferrentials”, i.e. species preferring one or the
other side of the dichotomy. The algorithm is rather complicated, but the aim is to get
polarized ordinations, i.e. ordinations where most of the samples are not close to the
center of the gravity. In this way, the classification of the samples is not based so
much on the species common in both parts of the dichotomy, but mostly on the
species typical for one part of the dichotomy, and consequently (in concordance with
the phytosociological tradition) these species can be considered to be good indicators
of the ecological conditions. In the first division, the polarity (i.e. which part of the
dichotomy will be negative and which positive) is arbitrary. In the subsequent
divisions, the polarity is determined according to the similarity of the parts of the
dichotomy to the “sister” group in the higher division. For example, in the
dendrogram in the Figure 5-10, the group 01 is more similar to the group 1 than the
group 00. Thanks to this, the samples are ordered in the final table, and we get table
that is similar to the ordered phytosociological table.

0 1

00 01

Figure 5-10 A sample splits in a TWINSPAN classification

Also, the “rule”, i.e. the set of species which were important for particular
division, is printed by the program at each step; this highly increases the
interpretability of the final results. The classification of samples is complemented
with the classification of species and the final table is based on this two-way
classification.
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Analysis of the Tatry samples

In the following text we will demonstrate the use of TWINSPAN for the analysis of
a set of 14 relevés from an altitudinal transect in Nizke Tatry Mts, Slovakia.
TWINSPAN is useful for large data set, the small data set is used here for simplicity.
We used the file tatry.spe, i.e. the file imported using the WCanoImp into the
condensed Cornell (CANOCO) format. In the example, we asked for the long output,
to show what information can be obtained from the program (usually, only short
output is requested – even the short output is pretty long).

First, the headings are printed and the program lists the options selected. The
important ones are
Cut levels:

.00 1.00 2.00 3.00 4.00 5.00

Because the data were converted into numeric values using the ordinal
transformation, there is no reason to further „downweight“ the higher values. When
the data are in the form of cover estimated, it is reasonable to use the default cut
levels, i.e. 0 2 5 …… The values 0 1 10 100 1000 give results corresponding to
a logarithmic transformation and are useful when the data are numbers of
individuals, differing in order of magnitude.

From further options note the following (all are defaults here):

1. Minimum group size for division: 5
2. Maximum number of indicators per division: 7
3. Maximum number of species in final tabulation: 100
4. Maximum level of divisions: 6

The option 1 means that groups containing less than 5 relevés are „final“, i.e.
are not further divided. For small data sets, it might be reasonable to decrease this
value to 4. 2. Number of indicators per division: usually, the default is fine. 3. If you
have more than 100 species, the 100 most common species will be included in the
final tabulation. You can increase the value, if you need. 4. This is another way how
to control when to stop divisions (control by the size of the group – in option 1. is
better solution; for data set of reasonable size, however, 6 is usually enough).

Then, the first division is described:
DIVISION 1 (N= 14) I.E. GROUP *
Eigenvalue .565 at iteration 1
INDICATORS, together with their SIGN
Oreo Dist1(+)

The indicator for the first division is Oreochloa disticha (the 1 at the end
means that the first pseudospecies cut level was used, i.e. presence of the species is
enough to be considered indicator present).

Maximum indicator score for negative group 0 Minimum indicator score for positive
group 1

Items in NEGATIVE group 2 (N= 10) i.e. group *0
Samp0001 Samp0002 Samp0003 Samp0004 Samp0005 Samp0006 Samp0007 Samp0008
Samp0009 Samp0010

BORDERLINE negatives (N= 1)
Samp0009

Items in POSITIVE group 3 (N= 4) i.e. group *1
Samp0011 Samp0012 Samp0013 Samp0014
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The division of samples. Note the warning for sample 9, that is was on the
border between the two groups (this warning appears only when you ask for long
output).

Now, the species preferring one side of the dichotomy (preferentials) are
listed, with number of occurrences in each of the groups (e.g. Picea abies was
present in 7 samples from the negative group and 1 sample from the positive group.
Note, that preferentials are determined with respect to the number of samples in each
group, and also for each pseudospecies cut level separately). Preferentials are
provided in the long output only (it is a long listing, a large part is deleted here also).
NEGATIVE PREFERENTIALS
Pice Abie1( 7, 1) Sorb Aucu1( 7, 0) Oxal Acet1( 7, 0) Sold Hung1( 5, 0) Aven Flex1( 10, 1) Gent Ascl1(
8, 0)
Dryo Dila1( 8, 0) Pheg Dryo1( 6, 0) Pren Purp1( 2, 0) Poly Vert1( 3, 0) SoAu cJu 1( 3, 0) Luzu Pilo1(
2, 0)
etc

POSITIVE PREFERENTIALS
Juni Comm1( 0, 2) Ligu Mute1( 4, 4) Sold Carp1( 2, 4) Ranu Mont1( 1, 2) Hupe Sela1( 3, 3) Geun Mont1(
2, 2)
Vacc Viti1( 2, 4) Puls Alba1( 0, 2) Gent Punc1( 2, 3) Soli Virg1( 1, 1) Luzu Luzu1( 1, 1) Oreo Dist1(
0, 4)
etc.

NON-PREFERENTIALS
Pinu Mugo1( 5, 2) Vacc Myrt1( 10, 4) Homo Alpi1( 10, 4) Cala Vill1( 8, 3) Rume Arif1( 4, 1) Vera Lobe1(
5, 3)
Pinu Mugo2( 5, 2) Vacc Myrt2( 10, 4) Homo Alpi2( 10, 4) Cala Vill2( 8, 3) Rume Arif2( 4, 1) Vera Lobe2(
5, 3)
etc.

End of level 1

We can start now to draw the dendrogram. The part that is clear now is:

0 1

will be further divided

Figure 5-11 The first division in the TWINSPAN example

The positive group is final, because it is smaller than 5, which is the
minimum size for division. The next level follows (without the preferentials):

DIVISION 2 (N= 10) I.E. GROUP *0
Eigenvalue .344 at iteration 1
INDICATORS, together with their SIGN
Pice Abie1(-)

Maximum indicator score for negative group -1 Minimum indicator score for
positive group 0

Items in NEGATIVE group 4 (N= 7) i.e. group *00

S11,S12,S13,S14

Oreochloa disticha
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Samp0001 Samp0002 Samp0003 Samp0004 Samp0005 Samp0006 Samp0007

Items in POSITIVE group 5 (N= 3) i.e. group *01
Samp0008 Samp0009 Samp0010

DIVISION 3 (N= 4) I.E. GROUP *1
DIVISION FAILS - There are too few items

End of level 2

In a similar way, we can continue in the construction of the dendrogram (one
indicator per division is rather an exception, not a rule).

0 1

00 01

will be further divided

Figure 5-12 The second-level division in the TWINSPAN example

The next level is:

DIVISION 4 (N= 7) I.E. GROUP *00
Eigenvalue .279 at iteration 1
INDICATORS, together with their SIGN
Pinu Mugo1(+)

Maximum indicator score for negative group 0 Minimum indicator score for
positive group 1

Items in NEGATIVE group 8 (N= 5) i.e. group *000
Samp0001 Samp0002 Samp0003 Samp0004 Samp0005

Items in POSITIVE group 9 (N= 2) i.e. group *001
Samp0006 Samp0007

Note the meaning of indicator species Pinus mugo here. It is an indicator
within the group 00 (containing 7 samples), where it is present just in two of the
samples, 6 and 7 (forming positive group 001). However, it is also common the in
samples 8, 9, 10, 11 and 12. So, the indicators are determined and should be
interpreted just for a particular division, not for the total group. The group 001 is
characterized by the presence of Pinus mugo in contrast to group 000, and not within
the whole data set. Also, here is clear the advantage of TWINSPAN, where the
orientation of groups (i.e. which group will be negative and which positive) depends
on which of the groups is more similar to the group 01 (and this group, among
others, has Pinus mugo in all its samples).

S11,S12,S13,S14

Oreochloa disticha

Picea abies

S8,S9,S10
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We will not show further divisions, (the group 000 contains 5 samples and
still can be divided further), and will finish the dendrogram at this level:

0 1

00 01

000 001

Figure 5-13 Final stage of the TWINSPAN classification example

In a similar way, we can construct the classification (dendrogram) for the
species. Note that the indicators are those used in the divisions, and often are limited
in number. If you want to have characterized the division by more species, you
should use preferentials.

Finally, the table is printed. It resembles the classical ordered
phytosociological table and is accompanied by the classification of both samples and
species.

SSSSSSSSSSSSSS
aaaaaaaaaaaaaa
mmmmmmmmmmmmmm
pppppppppppppp
00000000000000
00000000000000
00000000011111
21345678901234

4 Sali SIle ---------5---- 0000
29 Anth Alpi -----2---3---- 0000
30 Hype Macu ------2--3---- 0000
31 Rubu Idae ------2--3---- 0000
28 Aden Alli -----2---2---- 0001
1 Pice Abie 6666665---5--- 001000
7 Oxal Acet 55344-4--3---- 001001
9 Sold Hung 43444--------- 001001
18 Luzu Pilo 2-2----------- 001001
20 Luzu Sylv --3243-------- 001001
12 Gent Ascl 23333333------ 001010
14 Pheg Dryo 4333-33------- 001010

S11,S12,S13,S14
Oreochloa disticha

Picea abies

S8,S9,S10

S6,S7

S1,S2,S3,S4,S5

Pinus mugo
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15 Pren Purp 2----3-------- 001011
16 Poly Vert 3----33------- 001011
22 Stel Nemo ---2--3------- 001011
2 Sorb Aucu 42-23444------ 00110
10 Aven Flex 34543443343--- 00110
13 Dryo Dila 333333-3-3---- 00110
17 SoAu cJu 3-----32------ 00110
19 Athy Dist 3-23335--53--- 00111
6 Vacc Myrt 54646666636653 01
8 Homo Alpi 44454454334334 01
11 Cala Vill 33365-54-6445- 01
21 Rume Arif --23--4--33--- 01
3 Pinu Mugo -----3666665-- 10
23 Vera Lobe ----2333-4322- 10
27 Hupe Sela -----223--22-3 10
36 Soli Virg ---------2--2- 10
33 Vacc Viti -------33-3343 1100
35 Gent Punc -------3-4333- 1100
37 Luzu Luzu ---------3--4- 1100
24 Ligu Mute ----233--23333 1101
25 Sold Carp -----54---3333 1101
26 Ranu Mont -----2-----33- 1101
32 Geun Mont ------2--3-33- 1101
5 Juni Comm -----------24- 111
34 Puls Alba -----------32- 111
38 Oreo Dist ----------5564 111
39 Fest Supi ----------3444 111
40 Camp Alpi ----------34-4 111
41 Junc Trif ----------4453 111
42 Luzu Alpi ----------33-- 111
43 Hier Alpi ----------233- 111
44 Care Semp -----------545 111
45 Tris Fusc -----------33- 111
46 Pote Aure ------------32 111
47 Sale Herb -------------5 111
48 Prim Mini -------------4 111

00000000001111
0000000111
0000011

Note that from the bottom three lines, the three levels of division and
memberships of all the samples in corresponding groups can be read: e.g., samples
11 to 14 are in the group 1 (which is not further divided).
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6. Visualization of multivariate data with CanoDraw 3.1
and CanoPost 1.0 for Windows

The primary device for presenting results of an ordination model is the ordination
diagram. The contents of an ordination diagram can be used to approximate the
species data table, matrix of the distances between individual samples and/or matrix
of the correlations or dissimilarities between the individual species. In an ordination
analysis with environmental variables, we can use an ordination diagram to
approximate contents of the environmental data table, correlation between species
and environmental variables, correlation among the environmental variables etc.
What can we read from an ordination diagram is summarized in the following two
sections, separately for the linear and the unimodal ordination methods.

6.1. What can we read from the ordination diagrams: Linear
methods

An ordination diagram based on a linear ordination method (PCA or RDA) might
display scores for samples (represented by points), species (represented by arrows),
quantitative environmental variables (represented by arrows), and nominal dummy
variables (represented by points - centroids - and corresponding to the individual
levels of a factor variable). The following Table 6-1 summarizes (after Ter Braak,
1994) what can be deduced from the ordination diagrams based on these scores.

Compared entities
Scaling 1

Focus on sample distances

Scaling 2

Focus on species
correlations

species X samples
(fitted) abundance values in species

data
(fitted) abundance values in species

data

samples X samples Euclidean distances among samples xxx

species X species xxx linear correlations among species

species X env.variables
linear correlations between species

and environmental variables
linear correlations between species

and environmental variables

samples X env.variables xxx
values of in environmental

variablesdata

env.variables X env.variables
marginal effects of environmental

variables on ordination scores
correlations between among

environmental variables

species X nominal env.vars.
mean species abundances within

classes
mean species abundances within

classes

samples X nominal env.vars.
membership of samples in the

classes
membership of samples in the

classes

nominal env.vars. X nom. env.vars.
Euclidean distances between sample

classes xxx

env.vars. X nominal env.vars. xxx
averages of environmental variables'

averages within classes

Table 6-1
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If we project sample points perpendicularly onto a species' arrow, we approximate
the ordering of that species values across the projected samples. If we use the sample
scores that are linear combination of the environmental variables (SamE scores,
typically in RDA), we approximate the fitted, not the observed values of those
abundances. This interpretation holds true for both kinds of scaling. If a centering by
species was performed, a sample point projecting onto the beginning of the
coordinate system (perpendicularly to a species arrow) is predicted to have an
average value of the corresponding species. The samples projecting further from the
zero point in the direction pointed by the arrow are predicted to have above-the-
average abundances, while the sample points projecting onto the opposite direction
are predicted to have below-the-average values.

Only in the scaling focused on the sample distances does the distance
between the sample points approximate their dissimilarity, expressed using the
Euclidean distance.

Only in the scaling focused on the species correlations do the angles among
the species arrows approximate the (linear) correlation coefficients among the
species. The approximated correlation between two variables is equal to the cosine of
the angle between the corresponding arrows: arrows pointing in the same direction
correspond to the species that are predicted to have a large positive correlation, the
species with a large negative correlation are predicted to have arrows pointing in the
opposite direction. Similarly, the pair of species with the arrows meeting at a right
angle are predicted to have a low (linear) correlation.

We can apply a similar approximation method when comparing the species
and environmental variables arrows. For example, if an arrow for a quantitative
environmental variable points in a similar direction as a species arrow, the values of
that species are predicted to be positively correlated with the values of that
environmental variable. This interpretation holds true for both types of scaling of
ordination scores.

We can perpendicularly project the sample points onto an arrow of an
environmental variable. This gives us the approximate ordering of the samples in the
order of increasing value of that environmental variable (if we proceed towards the
arrow tip and beyond it). The environmental variables (as well as the covariables) are
always centered (and standardized) before the ordination model is fitted, so similarly
to projecting the sample points on the species arrows, a projection point near the zero
point (the coordinate system origin) corresponds to an average value of that
particular environmental variable in that sample.

The angle among the arrows of the environmental variables can be used to
approximate correlation among those variables in the scaling focused on the species
correlations. Note however, that this approximation is not as good as that we would
achieve if analyzing environmental data table as the primary data in a PCA. If the
scaling is focused on the intersample distances, we can interpret each arrow
independently as pointing in the direction the sample scores would shift with an
increase of that environmental variable' values. The length of the arrows allows us to
compare the size of that effect across the environmental variables (note again that all
the environmental variables enter the analysis with a zero average and a unit
variance).
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CANOCO output allows a different interpretation of the scores of the nominal
environmental variables. These are usually the dummy (indicator) variables with
only 0 and 1 values, created by the expansion of a factor variable. These nominal
environmental variables are represented by the points that are centroids of sample
scores for the samples that have value of 1 for that particular dummy variable. We
can view the original factor variable as a classification variable and then the
individual nominal (dummy) variables correspond to the individual sample classes.
So we can say that the centroid score for that nominal variable represents the average
of the scores of samples belonging to that class.

If we project the centroids of the nominal environmental variables onto
a species arrow, we can approximate the average values of that species in the
particular classes of the samples. Similarly, the distance between the centroids of
nominal variables approximates (in the scaling focused on the intersample distances)
the dissimilarity of their species composition, expressed using the Euclidean
distance.

In both types of scaling, the distance between the centroids of individual
sample classes and a particular sample point allows us to predict membership of that
sample. A sample belongs with the highest probability into the class with its centroid
most close to that sample point.

If we project centroids of the nominal environmental variables on an arrow of
a quantitative environmental variable, we can deduce the approximate ordering of
that variable' average values in the individual sample classes.

6.2. What can we read from the ordination diagrams: Unimodal
methods

The interpretation of the ordination diagrams originating from the unimodal
ordination models is summarized in the Table 5-2. It has many similarities with the
interpretation we discussed in detail for the linear ordination model in the preceding
section, so we will point the reader to that section as needed.

The main difference in interpreting ordination diagrams from the linear and
from the unimodal ordination methods lays in the different model of the species
response along the constructed gradients (ordination axes). While a linear
(monotone) change was assumed in the preceding section, here (many of) the species
are assumed to have an optimum position along each of the ordination axes with their
abundances (or probability of occurence for presence-absence data) decreasing
symetrically in all directions from that point. The estimated position of that species
optimum is displayed as the species score, i.e. as a point. These positions are
calculated as the weighted averages of the sample positions with weights being that
species' abundances in the respective samples.

Another important difference is that the dissimilarity between samples is
based on the chi-square metrics, implying that any two samples with identical
relative abundances (say two samples with three species present and their values
being 1 2 1 and 10 20 10, respectively) are judged to be identical by an unimodal
ordination method. The dissimilarity of the distribution of different species is judged
using the same kind of metric, being applied to a transposed primary data matrix.
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Compared entities
Scaling 1

Focus on sample distances
and Hill's scaling

Scaling 2

Focus on species distances
and biplot scaling

species X samples relative abundances of the species
data table

(fitted) relative abundances of the
species data table

samples X samples turnover distances among samples χ2 distances among samples (if λs
comparable)

species X species xxx χ2 distances among species
distributions (from fitted

abundances)

species X env.variables weighted averages - the species
optima in respect to particular

environmental variable

weighted averages - the species
optima in respect to particular

environmental variable

samples X env.variables xxx values of the env.ironmental
variables in the samples

env.variables X env.variables marginal effects of env. ironmental
variables

correlations of among the env.
ironmental variables

species X nominal env.vars. relative total abundances in sample
classes

relative total abundances in sample
classes

samples X nominal env.vars. membership of samples in the
classes

membership of samples in the
classes

nominal env.vars. X nominal
env.vars.

turnover distances between the
sample classes

χ2 distances (if λs comparable)
between the sample classes

env.variables X nominal env.vars. xxx averages of environmental variables
within the sample classes

Table 6-2

The mutual position of sample and species points allows us to approximate relative
abundances in the species data table. The species scores are nearby the sample points
they occur in, with the highest relative abundance and similarly, the sample points
are scattered near the positions of species that tend to occur in those samples. This
way of interpretation is called the centroid principle. A more quantitative form of it
works directly with the distances between the points. If we order the samples
according to their distance to a point for a particular species, this ordering
approximates ordering based on the decreasing relative abundance of that species.

For shorter gradient lengths, we can interpret the positions of species and
samples in the ordination plot using the biplot rule, similarly to the interpretation
used in the ordination diagrams based on the linear ordination methods. We simply
connect the species points with the origin of the coordinate system and project the
sample points perpendicularly on this line.

The distance among the sample points approximates the chi-square distances
between the samples in the biplot scaling with the focus on species, but only if the
ordination axes used in the ordination diagram explain a similar amount of variability
(if they have comparable eigenvalues).

If we use Hill's scaling with a focus on the sample distances, then the distance
between the samples is scaled in the "species turnover" units (also named SD units,
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from the "standard deviation" of the species response curves) that correspond to the
labelling of the ordination axes. The samples that are 4 units (or more) apart have
a very low probability of sharing any species. There is a "half change" in the species
composition along one SD unit.

The distance between the species points in the biplot scaling (with a focus on
the species distances) approximates the chi-square distance between the species
distributions.

If we project species points onto an arrow of a quantitative environmental
variable, we get an approximate ordering of those species' optima in respect to that
environmental variable. Similarly, we can project sample points on the arrow for
a quantitative environmental variable to approximate values in the environmental
data table, but only if the biplot scaling was used.

Interpretation of relation among environmental variables arrows (either using
the angle between the arrows or comparing relative directions and size of the impact)
is similar to that in the linear methods, described in the preceding section.

For centroids of nominal environmental variables (see previous section for
explanation of their meaning), we can use the distance between species points and
those centroids to approximate relative total abundances of the species in the
samples of that class (summed over all the samples in the particular class).

Comparison between sample points and centroids of nominal variables and
between the centroids and the arrows for the quantitative environmental variables
proceeds as in the linear models, described in the previous section.

The distance among the particular centroids of nominal environmental
variables is to be interpreted similarly as if measuring distance (dissimilarity)
between sample points. But the distance refers to the average chi-square (or turnover,
depending on the scaling) distances between the samples of the corresponding two
sample classes.

6.3. Regression models in CanoDraw

We use the program CanoDraw to create ordination diagrams with the ordination
scores of a selected combination of entities (e.g. samples and species). But beside
that, this program can be used as a tool to explore the multivariate data in the
framework of the ordination space, to review the trends indicated by the ordination
diagrams, and to check the assumptions made by the ordination model we used in
CANOCO. These facilities are discussed in this and the following sections. The
technical aspects of its use are discussed in more detail in the CanoDraw 3.0 User's
Guide (Šmilauer 1992).

Majority of the methods for visual exploration is concentrated in the
CanoDraw submenu Attributes. From there, we can select for example a plot
displaying values of a particular environmental variable in the ordination space. The
actual value of that variable in a sample is displayed at its position using a symbol of
the size proportional to that value. If we expect the value of the environmental
variable to change monotonically (or even linearly, as in the constrained ordination
model) across the ordination (sub)space, we should recognize such a pattern from
this symbol plot. But often, plotting individual sample values for even medium-sized
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data set does not allow for an efficient abstraction of the revealed pattern. But we can
replace the original data points with a simpler statistical model. CanoDraw provides
three broad classes of regression models we can use interchangeably in the attribute
plots, in addition to the symbol plots.

Generalized linear models (GLM) represent an extension of the traditional
linear regression model, accommodating for various distributional properties of the
response variable. More information can be found in the section 11.3 of this book.
CanoDraw allows us to fit GLMs with one of the four available distribution families
(with the assumed Poisson, binomial, Gamma or Gaussian statistical distribution of
the response variable). There is no choice of the link function - the canonical link
functions for the selected distribution family are used. We can specify the systematic
part of the model either exactly by fitting so called fixed model (so we can request,
for example, to fit second order polynomials of the predictor(s)) or we can let the
CanoDraw to select the model complexity using a stepwise selection based on the
analysis of deviance tests. A feature specific to the CanoDraw implementation of the
GLMs is that if the quadratic polynomial model with one predictor is fitted with the
assumed Poisson distribution, CanoDraw recognizes this to represent an unimodal
model of the species response and estimates the response curve optimum value and
its width (using the tolerance parameter), if that is possible (see Ter
Braak & Looman, 1986).

Generalized loess smoother is an extension of the now-classical loess
smoother (Cleveland & Devlin, 1988), which is a locally weighted regression
method. The difference between the standard loess smoother and the one
implemented here is that CanoDraw uses generalized linear model plugged into the
smoother algorithm. This way, the fitted response surfaces are more appropriate for
the binary data than those from the classical loess method.

Generalized kriging is a regression method derived from an ordinary least-
squares regression model but taking into account the (modelled) spatial
autocorrelation between samples collected in the space. The generalized kriging (also
called the universal kriging by others) estimates, in addition to the standard method,
the linear or polynomial trend in the response variable values across the samples'
space. The predictors used in the kriging are assumed to be the spatial coordinates of
the samples. This method might be appropriate not only if fitting species abundances
or environmental variable values onto the spatial coordinates of samples (which is
also possible with CanoDraw 3.x), but for fitting those into the ordination space, as
there the sample scores are also cross-correlated.

Whatever regression model we choose, the results are summarized either by
a fitted line or curve (in the case we have a single predictor, as if plotting the values
of an environmental variable against the scores on one of the ordination axes) or by
a contour plot, when there are two predictors (most often the sample coordinates on
two ordination axes). CanoDraw allows us to modify the proposed levels of the fitted
response variable, to be drawn in the contour plot.

6.4. Ordination Diagnostics

The diagrams (ordination diagrams and attribute plots) summarized in the preceding
sections can be used to check how far the data analyzed with an ordination method
fulfill the assumptions of the underlying model.
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The first obvious check is that concerning our assumption about the shape of
the species response along the ordination axes, representing the "recovered"
gradients of the community composition change (with an underlaying environmental
interpretation in the case of constrained ordination methods). Both in the case of the
linear and of the unimodal ordination methods, we should probably let the CanoDraw
select the regression model specification (i.e. null model vs. linear model vs.
polynomial regresssion model), in the case of the generalized linear models. Note,
however, that the restricted family of the polynomial specification of the response
curves excludes the possibility to find that the response curve is, in fact, assymetric
or that it has a bimodal shape (but we might interpret in this way the results where
a second order polynomial with a minimum in the middle of the gradient is selected).
The loess smoother provides a more general family of regression models with no
particular assumption about the shape of the fitted curve.

Another assumptions of the constrained ordination methods (both RDA and
CCA) is that the canonical ordination axes are the linear combinations of the
submitted environmental variables. For a quantitative environmental variable, we can
plot its value against the sample scores on one of the ordination axes to see whether
the change along the ordination axis is the linear one. While this is often the case and
it is partly a consequence of the definition of the sample scores (at least in the
constrained ordination methods), we can sometimes find a monotonic change in the
values, but far from the linear one. This often corresponds to a non-uniform response
of community composition along the gradients such as the successional time or the
altitude and it might suggest an appropriate transformation (for example a log
transformation) for such explanatory variables.

CANOCO manual refers to the ordination diagnostics in a slightly different
way, namely it means the statistics calculated with the ordination method. These
statistics describe, in general terms, how well are the properties of individual samples
and of individual species characterized by the fitted ordination model. This statistics
is named CFit in the case of species (see Ter Braak et Šmilauer 1998, p. 174) and
can be used in the CanoDraw program to select which species occur in the ordination
diagram. Additionally, we can plot these values into the ordination space.

6.5. T-value biplot interpretation

T-value biplot is a diagram containing lines for the species and the environmental
variables. It is primarily used to reveal statistically significant pairwise relations
between species and environmental variables (i.e. which species depend on which
environmental variables). We interpret the T-value biplot using the biplot rule (by
means of the perpendicular projections) to approximate a table of T-values of the
regression coefficients for multiple (weighted) regressions of the individual species
values onto all the environmental variables.

To interpret the plot, we project tips of the environmental variables arrows
onto a line overlaying the arrow of a particular species. The resulting projection
points approximate the T values of the regression coefficients of the individual
environmental variables, when used as predictors for values of that species. If the
environmental variables' arrows tips project on the line further from the origin than is
the species' arrowhead, we deduce that the corresponding regression coefficient has
a value larger than 2.0. This holds true also for projection onto line segment going in
the opposite direction, with the T-value being less than -2.0. Projection points
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between these limits (including the coordinate system origin) correspond to T-values
between -2 and +2, with the predicted value of a T statistics being 0.0 for the
coordinate origin' position.

If we want to find which species react significantly positively to a particular
environmental variable, we can draw a circle with its center in the half way from the
arrowhead for that variable and the origin of the coordinate system and its diameter
being equal to the length of that variable' arrow. Species lines that end in that circle
have a positive regression coefficient for that environmental variable with the
corresponding T-value larger than 2.0. We can draw a similar circle in the opposite
direction, corresponding to a significant negative regression coefficient.

An additional information on the T-value biplots can be found in Ter Braak &
Šmilauer (1998), pp. 177 - 180.┼

┼ The T-value plots created by the CanoDraw 3.x program have two problems: first, for the lines
representing the environmental variables, only the solid part is correct. The dashed segments should
be removed in the CanoPost program. But also the default range of axes is not correct. Before creating
the diagram (on the "virtual device" representing the PostScript output), we should use the popup
menu to Zoom-out. This creates a range of axes more appropriate for the T-value plot.
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7. Case study 1: Separating the effects of explanatory
variables

7.1. Introduction

In many cases, we need to separate the effects of several explanatory variables, even
when the explanatory variables are correlated. The example below comes from
a field fertilization experiment (Pyšek and Lepš 1991). A barley field was fertilized
with three nitrogen fertilizers (ammonium sulphate, calcium-ammonium nitrate, and
liquid urea) and two different total nitrogen doses. For practical reasons, the
experiment was not established in a correct experimental design; i.e. plots are
pseudo-replications. The experiment was designed by hydrologists to assess the
nutrient runoff and, consequently, smaller plots were not usable. We used this large-
plot experimental setup.* In 122 plots, species composition of weeds was
characterized by classical Braun-Blanquet relevés (for the calculations, the ordinal
transformation was used – i.e. numbers 1 to 7 were substituted for grades of the Br.-
Bl. scale: r, +, 1, …., 5). The barley cover was estimated in all the relevés.

We expected that the weed community was influenced both directly by the
fertilizers and indirectly through the effect of crop competition. Based on
experimental manipulations we can assess the overall fertilizer effect. However,
barley cover was highly correlated with the fertilizer dose. As barley cover was not
manipulated, there was no direct evidence of the effect of barley cover on the weed
communities. However, the data enable us to partially separate the direct effects of
fertilization from indirect effects of barley competition. This is done in a way similar
to the way we separate the effects of correlated predictors on the univariate response
in a multiple regression. The separation can be done using the variable of interest as
an explanatory (environmental) variable and the others as covariables.

7.2. Data

For simplicity, we will work with simplified data, ignoring fertilizer type, and taking
into account only the total fertilizer dose. Data are in the files fertil.spe

(relevés) and fertil.env (fertilizer dose and barley cover), or in Excel files
fertspe.xls and fertenv.xls (so that we can try creating our own files for
CANOCO using WCanoImp). The dose of the fertilizer is 0 for unfertilized plots, 1
for 70 kg of N/ha and 2 for 140 kg N/ha.

7.3. Data analysis

We recommend the following steps:

1. Calculate the unconstrained ordination, i.e. DCA. This shows total
variability by the length of the axes, which gives the total heterogeneity of the
vegetation data. The length of the first axis in Hill’s scaling is 3.8, which is in the
„gray zone“, where both linear and unimodal methods should perform reasonably
well. Then use the passive analysis of the environmental data (the environmental data
are projected on the ordination axes ex post).

* We will just forget this drawback in the following text
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2. Calculate a constrained ordination with all of the environmental variables
available. The length of the gradient from the first analysis serves as a lead for
selecting between CCA and RDA. Another lead should be whether we expect the
majority of weed species to respond to fertilization and/or crop cover in a linear way
or whether we expect some (all) species to have an optimum on this gradient.
Roughly, if the species change their proportions on the gradient then the linear
approximation is correct and if we expect qualitative changes in the species
composition (many species appearing and disappearing) then the weighted
averaging is better.

In the paper (Pyšek & Lepš 1991) we used CCA. In this example, we will use
RDA. RDA enables use of standardized/non-standardized analyses; by
standardization by samples we can separate differences in total cover from the
differences in species composition. Use both a RDA (with fertilizer dose and barley
cover are environmental variables) nonstandardized by samples (the results reflect
both the differences in total cover and differences in relative species composition)
and a RDA standardized by samples (the results reflect only differences in relative
representation of particular species). However, you should note that the interpretation
of standardized data based on species data values estimated on an ordinal scale may
be problematic.

Test the significance by a Monte Carlo permutation test - unconstrained
permutations. This is a test of the H0: there is no effect of environmental variables on
species composition, i.e. the effect of both variables is zero. The rejection of the null
hypothesis means that at least one of the variables has some effect on the species
composition of the plant community. The meaning of this test is analogous to an
overall ANOVA on the total model in a multivariate regression.

3. Calculate two separate partial constrained ordinations. In the first, use the
fertilizer dose as the environmental variable and barley cover as a covariable. The
analysis will reflect the effect of fertilization which cannot be explained by the effect
caused by the increased barley cover.

In the second analysis, use barley cover as the environmental variable and
fertilizer dose as a covariable. This analysis reflects the variability caused by the
differences in the barley cover which cannot be attributed to the fertilization effects.
Use both standardized and non-standardized by samples' analyses. In the Monte
Carlo permutation test, it is possible to use the constrained permutations
(permutations within blocks) when the dose is used as a covariable: because the dose
has three separate values and the plots with the same value of the dose can be
considered to form a block. The meaning of these tests is analogous to the test of
significance of particular regression coefficients in the multiple regression.

Note that it may sometimes happen (not in this data set) that the analysis with
both variables used as explanatory variables is (highly) significant, whereas none of
the analyses with one of the variables used as an explanatory variable and the other
as a covariable is significant. This case is equivalent to the situation in multiple linear
regression where the ANOVA on the total regression model is significant and none
of the regression coefficients differ significantly from zero. This happens when the
predictors are highly correlated, we are then able to say that the predictors together
explain a significant portion of total variability, but we are not able to say which of
them is the important one.
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4. Variation partitioning (see the section 4.10). We can be interested to know
what part of the variability can be explained solely by the dose and what part solely
by the cover. As the two variables are highly correlated, it is natural that there is
some part of the variability, for which it is possible to say that it is caused by one of
the two variables, but it is impossible to say by which one. We can do the variation
partitioning using the following procedure:

1. Calculate the RDA with both variables being explanatory variables. We will get:

Axes 1 2 3 4 Total
variance

Eigenvalues : .097 .046 .200 .131
1.000
Species-environment correlations : .705 .513 .000 .000
Cumulative percentage variance

Cumulative percentage variance
of species data : 9.7 14.3 34.4 47.5
of species-environment relation: 67.8 100.0 .0 .0

Sum of all unconstrained eigenvalues
1.000
Sum of all canonical eigenvalues

.143

There is a mistake in CANOCO output, the sum of all unconstrained eigenvalues
should read sum of all eigenvalues.

The results show that 14.3% of the total variation in species data can be
explained by both variables together.

2. Now calculate partial analysis, with cover being explanatory (environmental)
variable and dose covariable:

Axes 1 2 3 4 Total
variance

Eigenvalues : .074 .200 .131 .102
1.000
Species-environment correlations : .590 .000 .000 .000
Cumulative percentage variance

of species data : 8.0 29.5 43.6 54.5
of species-environment relation: 100.0 .0 .0 .0

Sum of all unconstrained eigenvalues
.931
Sum of all canonical eigenvalues

.074

The sum of all unconstrained eigenvalues is after fitting covariables
Percentages are taken with respect to residual variances

i.e. variances after fitting covariables

This shows that cover explains 7.4% of the total variability in species data which
cannot be explained by the dose. Note, that we do not use the percentage presented in
the cumulative percentage variance of species data (8%), because it is taken with
respect to the residual variation (i.e. after fitting the covariable), but directly the
corresponding canonical eigenvalue.
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3. In a similar manner, we now calculate partial ordination with dose being the
explanatory variable and cover a covariable:

Axes 1 2 3 4 Total
variance

Eigenvalues : .047 .200 .131 .102
1.000
Species-environment correlations : .500 .000 .000 .000
Cumulative percentage variance

of species data : 5.2 27.4 41.9 53.2
of species-environment relation: 100.0 .0 .0 .0

Sum of all unconstrained eigenvalues
.904
Sum of all canonical eigenvalues

.047

The dose explains 4.7% of species variability that cannot be accounted for by the
cover.

Now we can calculate:

Total explained variability is 14.3%. Of those, 7.4% can be explained solely
by the effect of barley cover, 4.7% by the effect of fertilizer dose; this gives together
12.1%. For the remaining 2.2% it is impossible to decide which of the environmental
variables is responsible for their explanation.

The variation partitioning can be displayed by the diagram:

Cover Dose

7.4% 2.2% 4.7%
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8. Case study 2: Evaluation of experiments in the
randomized complete blocks

8.1. Introduction

For an univariate response (e.g. number of species, total biomass) are the results of
experiments set in randomized complete blocks evaluated using the two-way
ANOVA without interactions (the interaction mean square (MS) is used as an error
term - denominator in calculation of F-statistics). In the following tutorial, we will
use CANOCO to evaluate in a similar way the community response (i.e.
a multivariate response: species composition of the community). In this example, the
experiment was established in four randomized complete blocks, the treatment had
four levels and the response was measured once in time. The experiment is described
in full by Špačková, Kotorová & Lepš (1998), here is the description of the
experiment slightly simplified.

Experiment was established in March 1994, shortly after snow melt, in four
randomized complete blocks. Each block contained four treatments, i.e. (1) removal
of litter, (2) removal of litter and bryophytes, (3) removal of the dominant species
Nardus stricta, and a (4) control plot where the vegetation remained undisturbed.
Each plot was 1x1 m square. The original cover of Nardus stricta was about 25%. Its
removal was very successful with nearly no re-growth. The removal in the spring
causes only minor soil disturbance that was not visible in the summer.

8.2. Data

In each 1 m2 plot adult plants and bryophytes cover was visually estimated in
August 1994. At that time, a new square (0.5 x 0.5 m) was marked out in the center
of each plot and divided into 25 0.1 x 0.1 m subplots. In each subplot adult plant
cover and numbers of seedlings were recorded. In the following example, we will use
the totals of seedlings in the 0.5 x 0.5 m plots. Data are in CANOCO format file
seedl.spe or in Excel file seedlspe.xls.

8.3. Data analysis

Question: Is it necessary to use a multivariate method? Would not it be
better to test effect on each species separately by an univariate method (i.e. either by
ANOVA, or by Analysis of Deviance1)?

Answer: It is much better to use a multivariate method. There is a danger in
use of many univariate tests. If we perform several tests at nominal significance level
α = 0 05. , the probability of Type I error is 0.05 in each univariate test. This means
that when testing, say, 40 species, we could expect two significant results just as
a result of Type I error. This can lead to „statistical fishing“, when one picks up just
the results of significant tests and tries to interpret them. We could overcome this by
using Bonferroni correction (dividing the nominal significance level by the number
of tests performed and performing the particular tests on the resulting significance

1 Analysis of Deviance is a method in the Generalized Linear Models, a generalization of ANOVA,
able to handle data having some non-Normal distribution (e.g. the Poisson distribution)
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level; this assures that the overall probability of the Type I error in at least one of the
tests is equal or smaller than α ), but this leads to an extremely weak test. I consider
it quite correct (but some statisticians probably do not) to use the univariate methods
for particular species when we found the community response significant, however,
we should keep in mind that the probability of type I error is α in each separate test.
We should be aware that if we select the most responsive species according to the
results of ordination, those species will very probably give significant differences,
and the univariate test does not provide any further information in addition to the
results of ordination.

Figure 8-1: The design of the experiment

The design of the experiment is shown in the Figure 8-1. Each quadrat is
characterized by (1) the type of the treatment, and (2) the number of the block. Both
are categorial variables and consequently have to be coded as a set of „dummy“
variables for CANOCO. The variables characterizing the block structure will be used
as covariables and the treatment variables will be the environmental variables.

The corresponding data set is in the Figure 8-2. CANOCO asks separately for
the environmental data and for the covariables, so each of those can be in a separate
file. If all the environmental variables and covariables are in the same file, you have
to specify the same file name (seedl.env in this case; in Excel as
seedlenv.xls) for both the environmental variables and the covariables and then
omit the first four variables from the covariable list and the last four variables from
the list of the environmental variables. It is very convenient to have the
environmental variables and the covariables in the same file - you can select various
subsets of environmental variables and covariables in various partial analyses.

The fourth environmental variable is not necessary here: three „dummy“
variables are sufficient for coding one categorial variable with four categories. The
fourth variable will be omitted from calculations, as it is a linear combination of the
previous three variables (lit+moss = 1 - control - litter-r - nardus-r). However, it is
useful to include it into the data, as after calculations, we will need to plot the results
using CanoDraw and we will need to plot centroids of all the four categories.
Similarly, the separate variable for the fourth block is not necessary.
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As the vegetation in the plot is very homogeneous and we also have only
categorial explanatory variables, we will use the Redundancy analysis, the method
based on the linear model. Now, we could test (at least) two hypotheses.

The first null hypothesis can be stated as follows: There is no effect of the
manipulation on the seedlings. To reject this hypothesis, it is enough if the total
number of seedlings differs between treatments, even if the proportion of seedling
species remains constant. When the proportion of seedlings changes also or when
both the proportion and total number of seedling changes, the null hypothesis will be
obviously also rejected.

The second hypothesis can be stated as: The proportions of the seedlings
differ between the treatments. This means that the seedlings of different species
differ in their reaction to the treatment. The first hypothesis can be tested only when
we use no standardization by samples (the default in CANOCO). When we use
a standardization by samples (usually by the sample norm), then we test the second
null hypothesis that the proportions of the species remain constant between the
individual treatments. Note that the standardization is part of the averaging in the
Canonical Correspondence Analysis: consequently, CCA will not find any difference
between the plots differing in the total numbers of seedlings, but with constant
proportions of individual species. The first test is more powerful, however the
significant result of the second test is more ecologically interesting: the fact that
seedlings of different species respond in different ways to particular treatments is
a good argument for the importance of regeneration niche for maintenance of species
diversity.

Ohrazeni 1994-seedlings, design of experiment
(i3,8(f3.0))
8
1 1 0 0 0 1 0 0 0
2 0 1 0 0 1 0 0 0
3 0 0 1 0 1 0 0 0
4 0 0 0 1 1 0 0 0
5 1 0 0 0 0 1 0 0
6 0 1 0 0 0 1 0 0
7 0 0 1 0 0 1 0 0
8 0 0 0 1 0 1 0 0
9 1 0 0 0 0 0 1 0

10 0 1 0 0 0 0 1 0
11 0 0 1 0 0 0 1 0
12 0 0 0 1 0 0 1 0
13 1 0 0 0 0 0 0 1
14 0 1 0 0 0 0 0 1
15 0 0 1 0 0 0 0 1
16 0 0 0 1 0 0 0 1

control litter-rnardus-rlit+mossblock1 block2 bl.
rel1 rel2 rel3 rel4 rel5 rel6 re.
rel11 rel12 rel13 rel14 rel15 rel16

Figure 8-2: Environmental data characterizing the design of the experiment (CANOCO file in full
format). File seedl.env
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The calculation of RDA follows the standard way (see the Canoco for
Windows manual). Just take care of the following issues:

(1) When you have environmental variables and covariables in the same file
do not forget to omit appropriate variables. Omitting of covariables is more
important, because if the same variable is in both covariables and environmental
variables, it will be automatically omitted from the environmental variables, as it
does not explain any variability.

(2) If you want to standardize by samples, you have to ask for a long dialog,
when running the console version of the CANOCO.

(3) When performing the Monte Carlo test, you can ask for permutation
within blocks, conditioned by all the three covariables (the fourth is collinear and is
omitted from the analyses). Each permutation class will then correspond to a block in
the experiment. The permutation within blocks is shown in the Figure 8-3. This was
recommended in the previous versions of CANOCO (under the null hypothesis, the
treatments are freely exchangable within a block). In the newer versions of
CANOCO, the residuals after subtracting the effect of covariables are permuted,
when the reduced model is selected (the residuals should be freely exchangable
under the null hypothesis). Ask for the reduced model and the unrestricted
permutations.

original block perm1 perm2 perm3 perm 4 perm 5
1 1 2 4 1 etc.
2 1 4 3 4 etc.
3 1 3 2 2 etc.
4 1 1 1 3 etc.
5 2 7 5 7 etc.
6 2 8 8 6 etc.
7 2 5 7 8 etc.
8 2 6 6 5 etc.
9 3 11 9 9 etc.
10 3 9 12 12 etc.
11 3 10 10 11 etc.
12 3 12 11 10 etc.
13 4 14 16 14 etc.
14 4 15 13 15 etc.
15 4 16 15 13 etc.
16 4 13 14 16 etc.

Figure 8-3: Permutations within blocks
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9. Case study 3: Analysis of repeated observations of species
composition in a factorial experiment: the effect of
fertilization, mowing and dominant removal in an

oligotrophic wet meadow

9.1. Introduction

Repeated observations of experimental units are typical for many areas of ecological
research. In experiments, the units (plots) are sampled first before the experimental
treatment is imposed on some of them. In this way we obtain the “baseline” data, i.e.
data where the differences between sampling units are caused solely by the random
variability. After the treatment is imposed, the units are sampled once or several
times, to reveal the difference between development (dynamics) of experimental and
control units. This design is sometimes called replicated BACI – Before After
Control Impact. Analyzing univariate response (e.g. number of species, or total
biomass) in this design, we usually apply the repeated measurements model of
ANOVA.

There are two possibilities, how to analyze the data: we can use the split-plot
ANOVA with time, i.e. repeated measures factor being the “within plot” factor (this
is called univariate repeated measurements ANOVA), or we can analyze the data
using MANOVA; although the theoretical distinction between those two is
complicated, the first option is usually used because it provides a stronger test.
Interaction between time and the treatment is a term reflecting the difference in
development of the units between treatments. CANOCO can analyze the repeated
observations of the species composition in a way equivalent to the univariate
repeated measurements ANOVA. Whereas in ANOVA all the terms are tested
simultaneously, in CANOCO we must run a separate analysis to test each of the
terms. We will illustrate the approach with an analysis of a factorial experiment
applying fertilization, mowing and dominant removal to an oligotrophic wet
meadow. The description of the experiment is simplified, full description is in Lepš
(1999).

9.2. Experimental design

The experiment was established in a factorial design in three replications of each
combination of treatments in 1994 (Fig. 9-1). The treatments were fertilization,
mowing, and removal of the dominant species (Molinia caerulea); i.e. 8
combinations in three replications yielding 24 2x2m plots. The fertilization
treatment is an annual application of 65 g/m2 of commercial NPK fertilizer. The
mowing treatment is the annual scything of the quadrats in late June or early July.
The cut biomass is removed after mowing. Molinia caerulea was manually removed
by screwdriver in April 1995 with a minimum of soil disturbance. New individuals
are removed annually.
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Figure 9-1: Design of the experiment

9.3. Sampling

Plots were sampled in the growing season (June, July) each year, starting in 1994.
Note that initial sampling was conducted before the first experimental manipulation
in order to have baseline data for each plot. The cover of all vascular species and
mosses was visually estimated in the central 1m2 of the 2m × 2m plot.

9.4. Data analysis

Data are in the form of repeated measurements; the same plot was sampled four
times. For univariate characteristic (=number of species) the corresponding repeated
measurements ANOVA model was used (von Ende 1993). For species composition,
I used Redundancy Analysis (RDA) in the CANOCO package with the Monte Carlo
permutation test. CanoDraw and CanoPost programs from CANOCO package (Ter
Braak & Šmilauer 1998) were used for the graphical presentations of the ordination
results. RDA, a method based on a linear species response, was used because the
species composition in the plots was rather homogeneous and the explanatory
variables were categorical. Because Molinia cover was manipulated, it was passive
in the analyses. This is very important because otherwise we would show (with
a high significance) that Molinia has higher cover in the plots where it was not
removed. It should be noted that by using the various combinations of the
explanatory (environmental in CANOCO terminology) variables and covariables in
RDA, together with the appropriate permutation scheme in the Monte Carlo test, we
are able to construct tests analogous to the testing of significance of particular terms
in ANOVA models (including repeated measurements). As the data form repeated
observations that include the baseline (before treatment) measurements, the
interaction of the treatment and the time is of the greatest interest and corresponds
to the effect of the experimental manipulation. When we test for the interaction, the
plot identifiers (coded as many dummy variables) are used as covariables. In this
way we subtract the average (over years) of each plot, and the changes in the
particular plot only are analyzed. Values of time were 0, 1, 2, 3 for the years 1994,



90

1995, 1996 and 1997 respectively. This corresponds to a model where the plots of
various treatments do not differ in 1994 and the linear increase in difference is fitted
by the analysis (this approach is analogous to the linear polynomial contrasts rather
than the ordinary effect testing in a repeated measurement ANOVA). The other
possibility is to consider time to be a categorial (=nominal) variable (each year would
be a separate category) and to code it as several dummy variables.

9.5. Technical description

The species data are in the Excel file ohrazspe.xls, the design of experiment is in
ohrazenv.xls. Using WCanoImp, we prepare condensed CANOCO species file
ohraz.spe, and environmental data file ohraz.env. In both files, the samples (i.e.
species and their cover values) are in the following order: samples from 1994 are
samples no. 1 to 24, samples from 1995 are samples no. 25 to 48 etc. The order will
be important for description of the permutation scheme. The names of samples are as
r94p1 , which means recorded 1994, plot 1. In the environmental data file, the first
three variables describe the which treatments were applied: 1 – treated, 0 – non-
treated. The next variable, Year is the time from the start of experiment, i.e. time as
a quantitative variable. Next four variables, Yr0, Yr1, Yr2 and Yr3 are dummy
variables, describing year as a categorical variable (for all the records done in 1994,
Yr0=1, and Yr1=0, Yr2=0 and Yr3=0). The next variables, P1 to P24 are plot
identifiers (i.e. for all the records from plot one, P1=1 and P2 to P24 are zero). We
will use this file as both environmental variables and covariables, with selecting
(deleting) proper variables from each of them.

We used following combinations of environmental variables and covariables
to test selected hypotheses:
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Table 9-1: Results of the RDA analyses of cover estimates of the species in 1m × 1m plots. Data
are centered by species. No standardization by samples was applied (Standardization N).
Explanatory variables are environmental variables in CANOCO terminology. % expl. 1-st axis:
percent of species variability explained by the first axis, measure of the explanatory power of
explanatory variables. r 1-st axis: species-environment correlation on the first axis. F-ratio: the
F-ratio statistics for the test on the trace. P- corresponding probability value obtained by the
Monte Carlo permutation test, 499 random permutations (i.e., Type I error probability in
testing the hypothesis that the effect of all the explanatory variables is zero). Yr - serial number
of the year, M - mowing, F - fertilization, R - Molinia removal, PlotID - identifier of each plot.
The asterisk (*) between two terms means an interaction.

Analysis Explanatory
variables

Covariables Stand
ardiza

tion

% expl.
1-st axis

r 1-st
axis

F-
ratio

P

C1 Yr, Yr*M,
Yr*F, Yr*R

PlotID N 16.0 0.862 5.38 0.002

C2 Yr*M, Yr*F,
Yr*R

Yr, PlotID N 7.0 0.834 2.76 0.002

C3 Yr*F Yr, Yr*M,
Yr*R, PlotID

N 6.1 0.824 4.40 0.002

C4 Yr*M Yr, Yr*F,
Yr*R, PlotID

N 3.5 0.683 2.50 0.002

C5 Yr*R Yr, Yr*M,
Yr*F, PlotID

N 2.0 0.458 1.37 0.040

Null hypotheses of the tests for the particular analyses are:

• C1: there are no directional changes in time in the species composition, neither
common to all the treatments, nor specific for particular treatments (corresponds
to the test of all within-subject effects in a repeated measures ANOVA).

• C2: The temporal trend in the species composition is independent of the
treatments.

• C3 (C4, C5): Fertilization (or removal, mowing, respectively) has no effect on
the temporal changes in the species composition (corresponds to the tests of
particular terms in a repeated measures ANOVA).

Note that when the Plot ID is used as covariable, the main effects (i.e. M, F,
and R) do not explain any variability, and it is meaningless to use them, either as
covariables, or as explanatory variables.

In this analysis, we consider time to be a quantitative (continuous) variable.
This means that we will use Year, and delete all Yr0 to Yr3. This corresponds to
search for linear trend in the data. If we look for general differences in dynamics, we
will consider time to be a categorial variable, and use Yr0 to Yr3 (on of them is
redundant, but useful for ordination diagrams) and delete Year. In this case, however,
the interaction between treatment and time must be defined as interaction with all the
dummy variables.

The null hypothesis C1 is a little complicated and difficult to interpret
ecologically. But this analysis is useful for a comparison with the other analyses in
terms of the explained variability and of the species-environment correlation on the
first axis. Also, the permutation scheme for this analysis is not unequivocal. For the
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other analyses, under the null hypotheses, the dynamics is independent of the
treatments imposed. This means that if the null hypothesis is true, then the plots are
interchangable; however, still the records from the same plot should be kept together
(technically speaking, the records done in different years in the same plot are
subplots of the same main plot, and main plots are permuted). To do this, following
options in the dialog should be used:

Perform test: I usually use "Both above tests". However, the procedure when
one performs both tests and then uses that one which gives better result is not correct.
It may be expected that the test of first ordination axis is stronger when there is
a single dominant gradient, the test of all constrained axes together is stronger when
there are several independent gradients in the data. Note that with single explanatory
variable, the first axis and all the axes are the same. Use of the permutation "under
reduced model" is recommended. Depending on your time available, computer speed
and size of the problem, the number of permutations can be increased. The
permutations should be Restricted for spatial or temporal structure or split-plot
design, then in the next window Split-plot design, Number of split-plots in whole-plot
is 4 (i.e. 4 records from each plot), and they are selected by the rule Take 1 Skip 23.
This corresponds to the order of records in the file: in our case, the records from the
same plot are separated by 23 record from another plots.┼ The whole-plots are freely
exchangable and "no permutation" is recommended on the split-plot level.* After
running the analysis, it is advisable to check in the log file the permutation scheme.
In our case, it should be:

*** Sample arrangement in the permutation test ***

Whole plot 1 :
1 25 49 73

Whole plot 2 :
2 26 50 74

Whole plot 3 :
3 27 51 75

etc...

showing that the whole-plots are composed of the records from the same plot,
which is correct.

The relationship of particular species to experimental manipulations can be
vizualized by ordination diagrams. Probably the best possibility is to display the
results of analysis C2 by environmental variables – species biplot (Figure 9-2).
Because we used the year as a continuous variable, the interaction of the time with
the treatments is also a continuous variable and is shown by arrows. Because time
was used as a covariable, the trends should be seen as relative to the average trend in
the community. For example, the concordant direction of a species arrow with the
FER*YEAR arrow means either that the species cover increases in the fertilized
plots or that it decreases in the non-fertilized plots (or both).

┼ Take care: if you use permutation within blocks – which is not our case , then the number of plots to
skip is the number of plots to skip within a block.
* According to the manual: Optionally, the time point could be permuted also, but this …. has a less
secure basis than the permutation of sites.
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Figure 9-2: Results of the analysis C2

9.6. Further use of ordination results

The results of the analyses can be further used. One of the possibilities is to use the
species scores. Species scores on the constrained axis of analyses, where
time*treatment was the only explanatory variable and the other factors were
covariables (C3 to C5), were considered characteristic of the species response to the
treatment. Then the following biological characteristics of species were tested as
possible predictors of this response:

1. Species height, taken as the middle of the range given in the local flora.

2. Presence of arbuscular mycorrhizae (AM), based on data from Grime et al.
(1988) and from the ecological flora database.

3. Seedling relative growth rate (RGR) from Grime et al. (1988).

Because I expected that species similar to Molinia would benefit most from
the Molinia removal, I also used a fourth (ordinal) variable, dissimilarity of a species
from Molinia, for predicting the effects of Molinia removal. Similarity 1 was
assigned to graminoids higher than 50 cm, 2 to broad-leaved graminoids smaller than
50 cm, 3 to narrow-leaved graminoids smaller than 50 cm, and 4 to forbs. Spearman
correlation was used for analysis of the relationship of this value with the RDA score
of Molinia removal.

Technically, we can get the results of analyses from the .sol file into
a spreadsheet (use Excel and read the file as delimited). Then you can use the species
scores and add the information you need (plant height, mycorrhizal status, etc). In
this case, it is reasonable to omit species which have a low frequency in the data
(those species show no response in majority of sampling units, simply because they
were not present neither before nor after the treatment).



94

10. Tricks and rules of thumb in using ordination methods

This chapter collects some practical advice we found useful when analyzing
multivariate data, namely when using the ordination methods. These issues are sorted
into several sections.

10.1. Scaling options

• We can use the CanoDraw 3.x program or some other, more general statistical
package to fit the unimodal response curves for a selected subset of species, in
relation to a selected ordination axis. In doing so, we will fit a generalized linear
model (GLM) with an assumed Poisson distribution and the log link function,
using abundances of a particular species as a response variable and the second
order polynomial of the sample scores on the selected axis. When doing the
analysis, we achieve the best results by selecting (in DCA or CCA) the Hill's
scaling with a focus on the inter-sample distances.

• If we select in a linear ordination method (PCA, RDA) that the species scores are
to be divided by their standard deviation, then the length of each species arrow
expresses how well are the values for that species approximated by the ordination
diagram. If we decide, on the other hand, that the scores are not divided by the
standard deviation, the arrows length shows the variability in that species' values
across the displayed ordination (sub)space.

10.2. Permutation tests

• If we need to test the significance of the second canonical axis, we should setup
a new CANOCO project, similar to the original one, but specifying the sample
scores on the first canonical axis as an (additional) covariable. If we did not have
any covariables originally, this is easily achieved by specifying the solution (.sol)
file of the original analysis as the file with the covariable data. CANOCO is able
to parse the solution file, looking for the sample scores. Note, however, that the
appropriate sample scores are those that are linear combinations of the
environmental variables. Therefore, to let the CANOCO find the correct set of
scores, we must change the text preceding the Samp section, replacing the
"Sample Scores" text with something different (e.g. "Xample Scores" as
suggested in the Canoco for Windows manual). In this way, CANOCO "misses"
the first section when parsing the solution file and reads the scores from the
SamE section. After modifying the file we should specify in the CANOCO
project that only the AX1 scores are to be used as a covariable and variables
AX2, AX3, and AX4 should be ignored. If we test the significance of the third
canonical axis, we should retain both AX1 and AX2 scores as the covariables.

• When fitting a constrained ordination model, we should reduce the cross-
correlations among the environmental (explanatory) variables. Keeping two or
more strongly correlated explanatory variables makes the resulting constrained
ordination model unreliable, similarly to the same situation in the regression
models. As an approximate criterion, we should reduce the set of the
environmental variables so that no variable has the VIF (variance inflation factor,
see Ter Braak et Šmilauer, 1998, p. 119) larger than 20.

• To keep a reasonable power (relatively low error Type II probability given the
probability of the Type I error) of the Monte Carlo permutation test, the
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suggested number of permutations can be estimated by specifying the desired
precision of the significance level estimate - P0 (say 0.01) and calculating the
number of permutations as N = (10/P0)-1, i.e. 999 for our example.

10.3. Other issues

• Users of the ordination methods too often ignore third and higher ordination axes.
While these ordination axes are often not interpretable and, in the case of a direct
gradient analysis, their contribution to the canonical subspace is not significant,
this must be explored and/or tested using the Monte Carlo permutation test.

• We should not fall into a despair if the variability explained by the submitted
environmental variables in a constrained ordination model is low, particularly if
we analyze presence-absence data or data with many zeros. In such cases, we can
often find a well-interpretable structure, even if the amount of the explained
variability is less than 10%. Also, we should differentiate between a statistically
significant relation and the strength of such a relation.

• The easiest way to calculate the matrix of correlation coefficients between the
species and the environmental variables is to define CANOCO project using the
redundancy analysis (RDA) and to center and standardize by the species. After
we analyze the project, the output directory contains a file named spec_env.tab
which contains these coefficients in the format of the CANOCO input data file.

• To compare results of two analyses that were using the same set of samples, we
can specify the solution file from the first project as the file with the
supplementary (passive) environmental variables within the other CANOCO
project. Note however, that CanoDraw 3.x does not recognize supplementary
environmental variables, so it does not display diagrams containing their scores.

• We should be careful when naming environmental variables and covariables that
are used to define the interaction terms. We should try to concentrate meaning of
the variable in the first four characters of their labels, as only these characters are
used when defining the names of the first-order interaction terms. Otherwise, we
might end up with several non-distinguishable names that prevent an easy
interpretation of the ordination diagrams.
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11. Modern regression: an introduction

The regression models allow us to model dependence of (usually) one response
variable (which might be quantitative or qualitative) on one or more predictor
variables. These can be, again, the quantitative variables and/or the factors. In this
sense, the regression models also include methods like the analysis of variance
(ANOVA) or the analysis of the contingency tables.

Durign the eighties, many new types of regression models were suggested,
usually extending in some way the well established ones. This chapter provides
a short summary of those methods that we found useful for study of the ecological
data.

11.1. Regression models in general

All the regression models share some basic properties of the response variable(s) and
the predictor(s). For simplicity, we will restrict our attention to the most frequent
kind of a regression models, where exactly one response variable is modeled using
one or more predictors.

The simplest way to describe any type of such regression model is following:

Y = EY + e

where Y refers to the values of the response variable, EY is the value of the response
variable expected for particular values of the predictor(s) and e is the variability of
the true values around that expected value EY. The expected value of the response
can be formally described as a function of the predictor values:

EY = f(X1, ..., Xp)

The EY part is also named the systematic component of the regression model, while
the e part is named the stochastic component of the model. Their general properties
and different roles they have when we apply regression models to our data are
compared in the table 11-1.

Stochastic component Systematic component
Mirrors a priori assumptions of the model Is determined by our research hypothesis

Its parameter(s) are estimated during or
after fitting (variance of response variable)

Its parameters (regression coefficients) are
estimated by fitting the model

We use it to estimate model quality
(regression diagnostics)

We interpret it and perform (partial) tests
on it / on its individual parameters

Table 11-1

When we fit a particular regression model to our data, our assumptions about
its stochastic component (usually the assumptions about the distributional properties
and about the independence or particular type of cross-dependence between
individual observations) are fixed, but we manipulate the complexity of the
systematic component. In the perhaps simplest example of the classical linear
regression model with one response variable Y and one predictor X, where the
systematic component can be specified as:

EY = f(X) = β0 + β1*X
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we can, in fact, achieve a larger complexity in modeling the dependence of the
variable Y on X by a polynomial model. We can shift the model complexity along
the complexity gradient starting with a null model EY = β0, through the linear
dependency given above, and the quadratic polynomial dependency EY = β0 + β1* X
+ β2 * X2, up to a polynomial of the n-th degree, where n is the number of data
observations we have available, minus one. This most complex polynomial model
(representing so called full model here) goes exactly through all the data points, but
provides no simplification of the reality (which is one of the basic tasks of a model).
We just simply replaced the n data points with n regression parameters (β0, ..., βn-1).
The null model, on the other hand, simplifies the reality so much we do not learn
anything new from such a model (and advancing our knowledge is another essential
service provided by the models).
But from our discussion of those extreme cases, we can clearly see that the selection
of model complexity moves us along a gradient from simple, not so precise models
to (overly) complex models. Also, the more complicated models have another
undesired property: they are too well fitted to our data sample, but they provide
biased prediction for the non-sampled part of the statistical population. Our task is, in
the general terms, to find a compromise point on this gradient, a model as simple as
possible for it to be useful, but neither more simple nor more complex. Such a model
is often referred as a parsimonious one.

11.2. General Linear Model: Terms

The first important stop on our tour over the families of modern regression methods
is the general linear model. Note the word general - another type of regression
method uses the word generalized in the same position, but meaning something
different. In fact, the generalized linear model (GLM), discussed in the next section,
is based on the general linear model (discussed here) and represents its
generalization.

What makes the general linear model different from the traditional linear
regression model is, from the user point of view, mainly that both the quantitative
variables and the qualitative variables (factor) can be used as predictors. Therefore,
the methods of analysis of variance (ANOVA) belong into the family of general
linear models. For simplicity, we can imagine that any such factor is replaced by k
"dummy", quantitative variables, if the factor has k+1 different levels. Note that the
method used by CANOCO (using dummy variables with values 0 or 1, with value 1
indicating membership of a particular observation in the corresponding class) is not
the only possible one.

In this way, we can represent the general linear model by the following
equation:
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but we must realize that a factor is usually represented by more than one predictor Xj

and, therefore, by more than one regression coefficient. The symbol ε refers to the
random, stochastic variable representing the stochastical component of the regression
model. In the context of the general linear models, this variable is assumed to have
a zero mean and a constant variance.
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This model description immediately shows one very important property of the
general linear model - its additivity. The effects of tje individual predictors are
mutually independent. If we increase, for example, the value of one of the predictors
by one unit, this has a constant effect (expressed by the value of the regression
coefficient corresponding to that variable) independent of the value the other
variables have and even independent of the original value of the variable we are
incrementing.

The above-given equation refers to the (theoretical) population of all the
possible observations, which we sample when collecting our actual dataset. Based on
such a finite sample, we estimate the true values of the regression coefficients ββββj,
usually labelled as bj. Estimation of the values of the regression coefficients is what
we usually mean when we refer to fitting a model. When we take the observed
values of the predictors, we can calculate the fitted (predicted) values of the response
variable as:
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The fitted values allow us to estimate the realizations of the random variable
representing the stochastic component - such a realization is called the regression
residual and labeled as ei:

iii YYe ˆ−=

Therefore, the residual is the difference between the observed value of the response
variable and the corresponding value predicted by the fitted regression model.

The variability in the values of the response variable can be expressed by the
total sum of squares, defined as
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In the context of the fitted regression model, this amount of variability can be further
divided into two parts - the variability of the response variable explained by the fitted
model - the model sum of squares, defined as
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and the so-called residual sum of squares defined as
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Obviously TSS = MSS + RSS. We can use these statistics to test the model
significance. Under the global null hypothesis ("the response variable is independent
of the predictors") the MSS is not different from the RSS, if both are relativized by
their respective number of degrees of freedom.┼

┼ See any decent statistical textbook for more details, e.g. Sokal & Rohlf (1995)
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11.3. Generalized Linear Models (GLM)

Generalized linear models (McCullagh & Nelder, 1989) extend the general linear
model in two important, mutually related aspects. First, the expected values of the
response variable (EY) are not supposed to be always directly equal to the linear
combination of the predictor variables. Rather, the scale of the response depends on
the scale of the predictors through some simple, parametric function, named link
function:

g(EY) = η
where η is called the linear predictor and is defined similarly as the whole
systematic component of the general linear model, namely:

η = β0 + �βjXj

The use of the link function has the advantage that it allows us to map from the
whole real-valued scale of the linear predictor (reaching, generally, from the -∞ to
+∞) to a specific interval making more sense for the response variable (like non-
negative values for counts or values between 0 and 1 for the probabilities).

Second, the generalized linear models do not have so specific assumptions about the
stochastic part as the general linear models do. Its variance needs not to be constant
(but, rather, it can depend on the expected value of the response variable, EY) and
there is some variety in the assumed statistical distributions for the stochastic part
(and, therefore, for the response variable).

The options we have for the link functions and for the assumed type of the
distribution of the response variable cannot be fully independently combined,
however. For example, the logit link function maps the real scale onto a range from 0
to +1, so it is not a good link function for, say, an assumed Poisson distribution. The
table 11-2 lists some typical combinations of the assumed link functions and
expected distributions of the response variable, together with a characteristic for the
response variables matching these assumptions.

Variable type "Typical" link function Reference distribution
counts (frequency) log Poisson

probability
(relative frequency)

logit
or probit

binomial

dimensions, ratios inverse or log gamma
quite rare type of

measurements
identity Gaussian ("normal")

Table 11-2

With this knowledge, we can summarize what kinds of regression models are
embraced by the GLMs:

• “classical” general linear models (including most types of the analysis of
variance)

• extension of those classical linear models to variables with non-constant
variance (counts, relative frequencies)

• analysis of contingency tables (using log-linear models)
• models of survival probabilities used in toxicology (probit analysis)
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The generalized linear models do not use the concept of a residual sum of squares.
The extent of discrepancy between the true values of the response variable and those
predicted by the model is expressed by the model' deviance. Therefore, to assess
quality of a model, we use the statistical tests based on the analysis of deviance,
quite similar in its concept to an analysis of variance of a regression model.

An important property of the general linear model, namely its linearity, is
retained in the generalized linear models on the scale of the linear predictor. The
effect of a particular predictor is expressed by a single parametr - linear
transformation coefficient (the regression coefficient). Similarly, the model additivity
is kept on the linear predictor scale. On the scale of the response variable, things
might look differently, however. For example with a logarithmic link function, the
additivity on the predictors' scale corresponds to a multiplicative effect on the scale
of the response.

11.4. Loess smoother

The term smoother is used for a regression model attempting to describe (usually in
a non-parametric way) the expected values of the response for a particular value(s) of
the predictor variable(s). The values predicted by a smoother are less variable than
the observed ones (hence the name 'smoother').

There are several types of the smoothers, some of them not very good, but
simple to understand. A good example of such a smoother is the moving average
smoother. An example of a better smoother is the so-called loess smoother (earlier
also named lowess). This smoother is based on a locally weighted linear regression
(Cleveland & Devlin 1988, Hastie & Tibshirani 1990). It uses the linear regression
model to estimate the value of the response variable for a particular combination of
the predictors' values, fitting the model using only the observations having their
values of predictor variables sufficiently close to the estimation point. The area (band
for a single predictor) around the estimation point used to select data for the local
regression model fit is called the bandwidth and it is specified as a fraction of the
total available dataset. Therefore, bandwidth value α=0.5α=0.5α=0.5α=0.5 specifies that at each
estimation point, the half of the observations (those closest to the considered
combination of the predictors' values) is used in the regression. The complexity of
the local linear regression model is specified by the second parameter of the loess
smoother, called its degree (λλλλ). Typically, only two values are used: 1 for a linear
regression model and 2 for a second-order polynomial model.

Furthermore, the data points used to fit the local regression model do not
enter it with the same weight. Their weights depend on their distance from the
considered estimation point in the predictors' space. If a data point has exactly the
required values of the predictors, its weight is equal to 1.0 and the weight smoothly
decreases to 0.0 at the edge of the smoother bandwidth.

An important feature of the loess regression model is that we can express its
complexity using the same kind of units as in the traditional linear regression models
- the number of degrees of freedom (DF) taken from the data by the fitted model.
These are, alternatively, called the equivalent number of parameters. Further,
because the loess model produces predicted values of the response variable (like the
other models), we can work-out the variability in the values of the response
accounted for by the fitted model and compare it with the residual sum of squares.
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As we have the number of DFs of the model estimated, we can calculate the residual
DFs and calculate the sum of squares per one degree of freedom (corresponding to
the mean square in an analysis of variance of a classical regression model).
Consequently, we can compare regression models using an analysis of variance the
same way we do this for the general linear models.

11.5. Generalized Additive Model (GAM)

The generalized additive models (GAMs, Hastie & Tibshirani, 1990) provide an
interesting extension to the generalized linear models (GLMs). The linear predictor
of a GLM is replaced here by the so-called additive predictor. It is also represented
by a sum of independent contributions of the individual predictors, nevertheless the
effect of a particular predictor variable is not expressed using a simple regression
coefficient. Instead, it is expressed - for the j-th predictor variable by a smooth
function sj, describing the transformation from the predictor values to the (additive)
effect of that predictor on the expected values of the response variable.

ηηηηΑΑΑΑ = β = β = β = β0 + �sj(Xj)
The additive predictor scale is again related to the scale of the response variable via
the link function.

We can see that the generalized additive models include the generalized linear
models as a special case, where for each of the predictors the transformation function
is defined as:

sj(Xj) = ββββj * Xj

In the more general case, however, the smooth transformation functions (usually
called "smooth terms") are fitted using a loess smoother or a cubic spline smoother.
When fitting a generalized additive model, we do not prescribe the shape of the
smooth functions of the individual predictors, but we must specify the complexity of
the individual curves, in terms of their degrees of freedom. We usually need to select
the type of smoother used to find the shape of the smooth transformation functions
for the individual predictors. Typically, either the cubic spline smoother or the loess
smoother are used.

With generalized additive models, we can do a stepwise model selection
including not only a selection of the predictors used in the systematic part of the
model but also selection of complexity of their smooth terms.

Generalized additive models cannot be easily summarized numerically, in
contrast to the generalized linear models where their primary parameters - the
regression coefficients - summarize the shape of the regression model. The fitted
additive model is best summarized by plotting the estimated smooth terms
representing the relation between the values of a predictor and its effect on the
particular response variable.

11.6. Classification and Regression Trees

The tree-based models are probably the most non-parametric kind of regression
models one can use to describe a dependence of the response variable values on the
values of the predictor variables. They are defined by a recursive binary partitioning
of the dataset into subgroups that are successively more and more homogenous in the
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values of the response variable. At each partitioning step, exactly one of the
predictors is used to define the binary split. A split maximizing homogeneity and
difference of the resulting two subgroups is then selected. Each split uses exactly one
of the predictors - these might be either quantitative or qualitative variables.

The response variable is either quantitative (in the case of the regression
trees) or qualitative (for the classification trees). The results of fitting are discribed
by a "tree" portraying the successive splits. Each branching is described by the
specific splitting rule: this rule has the form of an inequality for quantitative
predictors (e.g. "VariableX2 < const") or the form of an enumeration of possible
values for a qualitative variable - factor (e.g. "VariableX4 has value a, c, or d"). The
two subgroups defined by such a split rule are further subdivided, until they are too
small or sufficiently homogeneous in the values of the response. The terminal groups
(leaves) are then identified by a predicted value of the response value (if this is
a quantitative variable) or by a prediction of the object membership in a class (if the
response variable is a factor).

When we fit a tree-based model to a dataset, we typically create ("grow")
an overcomplicated tree based on our data. Then we try to find an optimum size of
the tree for the prediction of the response values. A cross-validation procedure is
used to determine the "optimum" size of the tree. In this procedure, we create a series
of progressively reduced ("pruned") trees using only a subset of the available data
and then we use the remaining part of the dataset to assess performance of the
created tree: we pass these observations through the hierarchical system of the
splitting rules and compare the predicted value of the response variable with its
known value. For each size ("complexity") of the tree model, we do it several times.
Typically, we split the dataset into 10 parts of approximately same size and, for each
of these parts, we fit a tree model of given complexity using the remaining nine parts
and use the current one for performance assessment. A graph of the dependency of
the tree model "quality" on its complexity (model size) has typically a minimum
corresponding to the optimum model size. If we use a larger tree, the model is
overfitted - it provides a close approximation of the collected sample, but a biased
description of the sampled population.

11.7. Modelling species response curves: comparison of models

In this section, we will use the example of search of appropriate description of the
response of a selected tree species (beech - Fagus sylvatica) to the mesoclimatic
factors, namely the altitude and the annual amount of precipitation. The Figure 11-1
displays the original data in the form of two scatterplots. Note that the response
variable (frequency of the beech tree) is in a form of counts, being strictly non-
negative. The regression models presented further in this section were fitted using the
S-Plus for Windows program, version 4.5. The commands used to fit the models are
not shown here - learning to use this advanced statistical package is not an easy task
and would not fit into the scope of this book.
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Figure 11-1 Relation of the frequency of Fagus sylvatica on the altitude and the annual
precipitation amount

The frequency of Fagus seems to decrease with the increasing altitude, but
there are also some very low values for the lowest altitude values. It is nearly
impossible to judge whether is there any dependency of the Fagus freqyency on the
amount of annual precipitation.

The first model we will apply is a traditional linear model, fitted using an
algorithm based on the least-squares criterion. The complexity of the model was
selected using a stepwise selection procedure, where the tried model specifications
were a null model (no dependence of the Fagus frequency on the considered
variable), a linear model, a second-order polynomial (a quadratic dependence), and
a third order polynomial. The selected models are displayed in the Figure 11-2. The
dependence of the Fagus occurence on the altitude is best fitted by a linear model.
There we see one of the limitations the classical linear models have: the frequency
for the altitude of 3000 meters a.s.l. is expected to be negative. The model for the
annual precipitation influence over the Fagus occurrence is a second-order
polynomial, indicating a local minimum for the precipitation around the 1500 mm
per year.
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Figure 11-2 Two linear models describing, separately, the dependency of Fagus frequency upon
the altitude and the annual precipitation

Figure 11-3 Shape of two generalized linear models describing, separately, the dependency of
Fagus frequency upon the altitude and the annual precipitation

The Figure 11-3 summarizes similar regression models as those in Figure
11-2, this time fitted as the generalized linear models. An assumed distribution of the
response variable was the Poisson distribution and the logarithmic link function was
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used. We again used a forward selection, this time based on the analysis of deviance
tests (those are approximate tests based on the assumed chi-square distribution of the
residual deviances of the compared models). This time, a second order polynomial
model was selected for both the environmental factors, clearly showing a steep
decrease in the occurrence frequency for the very low altitudes. For the high
altitudes, on the other hand, the expected counts decrease gradually to the zero
values.

The last family of regression model where we will fit two separate models for
the two considered predictors are the generalized additive models. As for GLMs, we
assumed the Poisson distribution and selected a log link function. Again, we have
used a stepwise selection to decide about the model complexity, yet this time the
selection was guided by a statistics addressing the model parsimony directly.┼

During the stepwise selection, the candidate right sides were the null model,
a (generalized) linear model with a linear term, a (generalized) linear model with
a second order polynomial, a smooth term with one degree of freedom (DF), with
2 DFs, and 3 DFs. The smoother used in the smooth terms was a spline smoother.

Figure 11-4 Two generalized additive models fitting, separately the dependence of the Fagus
frequency on the altitude and the annual precipitation amount

The stepwise selection selected a smooth term with 3 degrees of freedom for
the model with the altitude as a predictor, while a more simple model (a smooth term
with 1 degree of freedom) was selected for the other model. There we see a similar
shape for the dependency of the Fagus frequency upon the annual precipitation, but
for the altitude, the model unveils another, probably more realistic picture. There is
an assymetric unimodal response curve, with the frequency of beech increasing
promptly from the approximate altitude of 400 meters up to 700 meters (an

┼ This statistics is called an Akaike Information Criterion (AIC) and is described for example in Hastie
& Tibshirani (1990).
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optimum?) and then decreasing again with the same speed until 1000 meters a.s.l.
Nevertheless, the decrease of the Fagus frequency is much slower above this
altitude, gradually declining until 2500 meters.

Now, we can check how the generalized additive model looks if we use both
explanatory variables at the same time. We should realize that even when the a GAM
models the effects of the two predictors independently, in an additive way, the
character of their contribution into the model will differ from that they display when
they are used separately. Also the model complexity selection must be done again.
Surprisingly enough, the stepwise selection selects a more complex model this time.┼

The smooth term for the altitude uses 4 degrees of freedom, the smooth term for the
precipitation takes 3 DFs.

Figure 11-5 Generalized additive model of dependence of the Fagus frequency on both the
altitude and the annual precipitation amount

The Figure 11-5 represents the most common type of representing the
generalized linear models: it plots the smooth functions sj for the individual
predictors, as described in the section 11.3. The vertical axis shows, therefore
a contribution of a particular smooth term to the additive predictor in the generalized
additive model. The estimated confidence regions for the fitted transformation curves
are also indicated. The smooth term for the altitude looks quite similar to that for the
separate GAM for the altitude shown earlier, but the smooth term for precipitation
indicates a loss of the decreasing segment for the low precipitation region.

At this place, we might review how comparable regression models would
look the generalized linear model, generalized additive model, and the loess
smoother. All these are in Figure 11-6 where both the 3-D surface plots and the
contour plots are shown.

┼ This might be due to a newly "recovered" patterns related to a possible interaction of the two
predictors or it might be a deficiency of the AIC statistics used to select a parsimonious model.
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Figure 11-6 Comparison of three response surfaces modeling frequency of Fagus using altitude
and annual precipitation amount as predictors and using (from left to right, looking sideways)
GLM, GAM, and loess smoother

The loess model does not retain the additivity of the two predictors' effects, so
it is more flexible at modelling their interaction, yet there is a price to pay for this.
First, we cannot evaluate the two effects independently: the shape of response curve
along, say, the altitudinal gradient depends on the values of the precipitation. Second,
to fit such more flexible model usually needs more data points (more degrees of
freedom to be available).



108

Finally, we will check what the regression trees methodology has to offer
when modelling response of the Fagus frequency to the mesoclimatic factors. This
time, we add another predictor to the two considered so far. The DegreeDays
variable provides a measure of how warm a particular site is.

As we might recall from the section 11.6, we first let the algorithm grow as
large a regression tree as possible. The result is displayed in the Figure 11-7. The
height of the branches is proportional to the decrease of the model' deviance or
(expressed in a different way), to the difference between the values of the response
for the two groups resulting from the particular split. We can clearly see that the
difference in altitude (with the threshold value being somewhere near the 1000
meters a.s.l.) is the most decisive one. The Fagus prefers the lower altitudes (the top-
left branch) where the frequency is generaly higher, except the sites which are
extremely warm (DegreeDays value over approx. 19000).

Figure 11-7 The newly grown regression tree with an overly complicated contents

Before we continue with the interpretation, we should work-out how
complicated tree is justified by its performance for predicting new values. This can
be done using the cross-validation procedure and the Figure 11-8 shows its results.
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Figure 11-8 Results of the tree cross-validation

The regression tree model residual deviance is plotted against the tree
complexity expressed by two different characteristics on the upper and lower
horizontal axis. There seems to be a minimum of the prediction errors for the tree
with 10 terminal branches (10 "leaves"), but for easier viewing, we have fitted, at
last, even simpler tree, displayed in the Figure 11-9.

Figure 11-9 The final regression tree

Note that while the result of fitting a regression tree is not as quantitative as
from the other presented models, it has other advantages. For example, it allows to
easily pin-point the interactions between the predictors, as well as the effects of
predictors with different spatial resolution etc.
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